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• We are motivated by the classical Calabi-Bernstein’s
problem in L3 (new elliptic problems),

• By the analysis of the behavior of solutions to
Calabi-Bernstein’s problems in spacetimes close to L3

(stability).

• This approach can be seen as a mathematical attempt
which could light suitable extensions to higher dimensions
(extension on noncompact complete Riemannian
manifolds).
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f : I −→ R is a positive smooth function
and u = u(x , y), (x , y) ∈ Ω ⊆ R2.

The constraint (E.2) is the ellipticity condition for equation (E.1).

The function u satisfies equation (E) (i.e. (E.1) and (E.2)
together) if it is extremal, among functions (which satisfy the
constraint (E.2)) under interior variation for the action

u 7−→
∫

f (u)
√

f (u)2 − |Du|2 dx ∧ dy .
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This variational problem naturally arises from Lorentzian
Geometry.

M:=I ×R2 with the Lorentzian metric

〈 , 〉 = −π∗I (dt2) + f (πI)
2π∗R2(g),

where πI and πR2 denote the projections onto the open interval

I of R and R2, respectively; g is the usual Riemannian metric of
R2 and f > 0 is a smooth function on I.

(M, 〈 , 〉) is a warped product with base (I,−dt2), fiber (R2,g)
and warping function f . We will refer to (M, 〈 , 〉) as a
Robertson-Walker (RW) spacetime.



An elliptic PDE arising in Lorentzian Geometry 5/12

This variational problem naturally arises from Lorentzian
Geometry.

M:=I ×R2 with the Lorentzian metric

〈 , 〉 = −π∗I (dt2) + f (πI)
2π∗R2(g),

where πI and πR2 denote the projections onto the open interval

I of R and R2, respectively; g is the usual Riemannian metric of
R2 and f > 0 is a smooth function on I.

(M, 〈 , 〉) is a warped product with base (I,−dt2), fiber (R2,g)
and warping function f . We will refer to (M, 〈 , 〉) as a
Robertson-Walker (RW) spacetime.



An elliptic PDE arising in Lorentzian Geometry 6/12

For each u ∈ C∞(Ω), u(Ω) ⊂ I, the induced metric on Ω, via the
graph

{
(u(x , y), x , y) : (x , y) ∈ Ω

}
⊂ M, is

gu = −du2 + f (u)2g,

which is positive definite, if and only if u satisfies (E.2).

When gu is Riemannian, then

f (u)
√

f (u)2 − |Du|2 dx ∧ dy

is its area element, and the previous functional is the area
functional A.
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A function u, satisfying (E.2), is a critical point of A if and only if
the spacelike graph has zero mean curvature,

(E) is called the maximal surface equation in M.

An important case of equation (E) is I = R and f ≡ 1. Then M
is the Lorentz-Minkowski spacetime L3 and equation (E)
possesses a well-known Calabi-Bernstein property, namely

The only entire (i.e. defined on all R2) solutions to
maximal surface equation (E) in L3 are the affine
functions

u(x , y) = ax + by + c

such that a2 + b2 < 1.
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• This relevant fact is a special case of more general theorems
obtained by Calabi1 and by Cheng-Yau2.

• It can be also stated in terms of the local complex
representation of the surface3,4.

1E. Calabi, Examples of Bernstein problems for some non-linear
equations, Proc. Sympos. Pure Math. 15 (1970), 223–230.

2S.T. Cheng, S.T. Yau, Maximal spacelike hypersurfaces in the
Lorentz-Minkowski space, Ann. of Math. 104 (1976), 407–419.

3F.J.M. Estudillo, A. Romero, Generalized maximal surfaces in
Lorentz-Minkowski space L3

, Math. Proc. Camb. Phil. Soc. 111 (1992),
515–524.

4O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space
L3

, Tokyo J. Math. 6 (1983), 297–309.
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• A direct simple proof of that result using only Liouville’s
theorem on harmonic functions on R2 was given by the author5.

• Even there is a local estimate of the Gauss curvature6 which
implies Calabi-Bernstein’s theorem.

• A local integral estimate of the Gauss curvature was given by
Alı́as-Palmer7 which also proves Calabi-Bernstein’s theorem.

5A. Romero, Simple proof of Calabi-Bernstein’s theorem, Proc. Amer.
Math. Soc. 124 (1996), 1315–1317

6F.J.M. Estudillo, A. Romero, On the Gauss curvature of maximal surfaces
in the 3-dimensional Lorentz-Minkowski space, Comment. Math. Helvetici 69
(1994), 1–4.

7L.J. Alı́as, B. Palmer, On the Gaussian curvature of maximal surfaces and
the Calabi-Bernstein theorem, Bull. London Math. Soc. 33 (2001), 454–458.
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For any warping function f ,

u = t0 is a solution to equation (E)⇐⇒ f ′(t0) = 0.

It is natural then to wonder

When these solutions are the only entire solutions to
equation (E)?

When equation (E) has no entire solution?
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We will answer these questions using the assumptions:

• f is not locally constant, (i.e. there is no flat open subset of
M) in this case, the RW spacetime M is said proper, and

• M satisfies a natural curvature condition, the Null
Convergence Condition (which is defined later).
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Strategy
(1) On any maximal surface of a proper RW spacetime obeying
NCC, there exists a positive superharmonic function which is
constant if and only if the surface is an open portion of a
spacelike slice t = t0 with f ′(t0) = 0.

(2) Given a spacelike graph S such that sup(f (t)|S) <∞,
(t := πI ◦ x), its metric is conformally related to a metric g∗ which
is complete when the graph is entire and inf(f (t)|S) > 0.

(3) On any maximal graph S such that sup(f (t)|S) <∞, g∗ has
non-negative Gauss curvature.
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A RW spacetime obeys the null convergence condition (NCC),
when its Ricci tensor, Ric, satisfies

Ric(Z ,Z ) ≥ 0,

for any null tangent vector Z , i.e. Z 6= 0 satisfies 〈Z ,Z 〉 = 0.

NCC arises from Physics. In fact, NCC on a spacetime is a
necessary condition in order that the spacetime obeys
Einstein’s equation. NCC is an energy condition which must
satisfy realistic spacetimes8

83-dimensional spacetimes (toy cosmological models) provide useful
information to understand 4-dimensional relativistic ones.
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Taking into account that the fiber of M is flat, we have9

Ric(X ,Y ) =

(
f ′′

f
+

(f ′)2

f 2

)
〈X F ,Y F 〉 − 2f ′′

f
〈X , ∂t〉〈Y , ∂t〉,

for any tangent vectors X ,Y to M, where

X F := X + 〈X , ∂t〉 ∂t and Y F := Y + 〈Y , ∂t〉 ∂t

are the components of X and Y on the fiber R2 of M.

9See for instance B. O’Neill, Semi-Riemannian Geometry with
applications to Relativity, Academic Press, 1983 (Corollary 7.43).
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Consequently, for a null tangent vector Z , it reduces to

Ric(Z ,Z ) = −(log f )′′ 〈Z , ∂t〉2.

Therefore, a RW space M obeys NCC if and only if its warping
function satisfies

(log f )′′ ≤ 0.



Timelike conformal symmetry

The technique we will use here is based on the existence on M
of the vector field

ξ := f (πI) ∂t .

which is timelike and satisfies10

∇X ξ = f ′(πI) X ,

for any X tangent to M. Thus, ξ is conformal with

Lξ〈 , 〉 = 2 f ′(πI) 〈 , 〉

and its metrically equivalent 1-form is closed.

10See for instance B. O’Neill, (Corollary 7.35).
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Let (M, 〈 , 〉) be a RW spacetime and let x : S −→ M be a
(connected) immersed spacelike surface in M.

The unitary timelike vector field ∂t := ∂
∂t ∈ X(M) determines a

time-orientation on M. It allows us to construct N ∈ X⊥(S) as
the only, globally defined, unitary timelike normal vector field on
S in the same time-orientation of −∂t .

Thus, from the wrong way Cauchy-Schwarz inequality,11 we
have

〈N, ∂t〉 ≥ 1

and 〈N, ∂t〉 = 1 holds at a point p if and only if N(p) = −∂t (p).

11See for instance B. O’Neill, (Proposition 5.30).
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A spacelike slice is a spacelike surface x such that πI ◦ x is a
constant. A spacelike surface is a spacelike slice if and only if it
is orthogonal to ∂t or, equivalently, orthogonal to ξ.
Denote by ∂T

t := ∂t + 〈N, ∂t〉N the tangential component of ∂t
on S. It is not difficult to see

∇t = −∂T
t

where ∇t is the gradient of t := πI ◦ x .

From the Gauss formula, taking into account ξT = f (t)∂T
t , and

previous expression, the Laplacian of t satisfies

∆t = − f ′(t)
f (t)

{
2+ | ∇t |2

}
+ 〈N, ∂t〉 trace(A)

where f (t) := f ◦ t , f ′(t) := f ′ ◦ t and A is the shape operator
associated to N.
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The function H := −1
2 trace(A) is called the mean curvature of

S relative to N. A spacelike surface S with H = 0 is called
maximal. In fact, H = 0 if and only if S is (locally) a critical point
of the area functional. Note that, with our choice of N, the
shape operator of t = t0 is A = f ′(t0)

f (t0)
I and H = − f ′(t0)

f (t0)
.

If S is a maximal surface, we get

∆t = − f ′(t)
f (t)

{
2+ | ∇t |2

}
.

and t is harmonic if and if f ′(t) = 0. Assume f is not locally
constant, in this case t is harmonic if and if t = t0, with
f ′(t0) = 0.
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• This contrasts with the case of maximal surfaces in
Lorentz-Minkowski spacetime L3 (and, of course, of minimal
surfaces in Euclidean space R3), where the coordinates of the
immersion are harmonic functions.

• This fact is crucial to introduce the (local) conformal
Weierstrass representation of the surface, which allows to
express in terms of conformal data the geometry of the surface.
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A function on a maximal surface induced from f

When S is a maximal surface, using previous formula for the
Laplacian of t , we get

∆f (t) = −2
f ′(t)2

f (t)
+ f (t)(log f )′′(t) | ∇t |2

Thus, if it is assumed that M satisfies NCC, then

∆f (t) ≤ 0,

that is, f (t) is a positive superharmonic function on S, and note
that if f is not locally constant, then f (t) is constant if and only if
t is constant.



The Gauss curvature 1/2

The Gauss curvature K of a maximal surface S in M, taking
into account the Gauss equation and the expression for the
Ricci tensor of M previously shown, satisfies

K =
f ′(t)2

f (t)2 − (log f )′′(t) | ∂T
t |2 +

1
2

trace(A2),

where
f ′(t)2

f (t)2 − (log f )′′(t) | ∂T
t |2

is, at any point p ∈ S, the sectional curvature in M of the
tangent plane dxpTpS.
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Therefore,

For any maximal surface in a RW spacetime, we have

K ≥ f ′(t)2

f (t)2 − (log f )′′(t) | ∂T
t |2,

with equality if and only if the surface is totally
geodesic. In particular, if the RW spacetime satisfies
NCC we always have

K ≥ 0.
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Now, consider the function 〈N, ξ〉 on S, where ξ is the timelike
conformal and closed vector field distinguished on M.

∇〈N, ξ〉 = −AξT ,

ξT := ξ+ 〈N, ξ〉N is the tangential component on S. Therefore,

| ∇〈N, ξ〉|2 =
1
2

trace(A2)
{
〈N, ξ〉2 − f (t)2}

A direct computation, using the Codazzi equation, gives

∆〈N, ξ〉 = Ric(N, ξT ) + trace(A2)〈N, ξ〉
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From the expression for the Ricci tensor of M previously shown,
we have

Ric(N, ξT ) = −(log f )′′(t) | ∂T
t |2 〈N, ξ〉

Thus

∆〈N, ξ〉 =
{

K − f ′(t)2

f (t)2 +
1
2

trace(A2)
}
〈N, ξ〉.
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First of all, note that if a non-locally constant positive smooth
function f : I −→ R satisfies

(log f )′′ ≤ 0

and has a critical point t0 then it is unique.

In fact, f (t0) must be the global maximum value of f .
Therefore

sup(f ) = f (t0).
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Now, consider an entire spacelike graph{
(u(x , y), x , y) : (x , y) ∈ R2} ⊂ M,

so that u satisfies (A.2) everywhere on R2.

Note that t
(

u(x , y), x , y
)

= u(x , y) for any (x , y) ∈ R2, and
thus t and u can be naturally identified on the spacelike graph.

It is not difficult to see that the unitary timelike normal vector
field in the same time-orientation of −∂t is

N =
−f (u)√

f (u)2 − |Du|2

(
1,

1
f (u)2

∂u
∂x
,

1
f (u)2

∂u
∂y

)
.
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So, we obtain

〈N, ξ〉2 =
f (u)

4

f (u)2 − |Du|2
.

Define the following Riemannian metric

g ′ := 〈N, ξ〉2 gu,

where gu = −du2 + f (u)2g is the induced metric on R2.
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Assume ε := inf(f ) > 0. Given a smooth curve on R2, denote
by L′ and L0 its lengths with respect to g ′ and the usual metric
g of R2, respectively. It easily follows

L′ ≥ ε2 L0,

which implies that divergent curves have infinite g ′-length.
Therefore, g ′ is complete.

Put λ := sup(f )(<∞) and consider the Riemannian metric

g∗ = (〈N, ξ〉+ λ)2 gu

on R2. The completeness of g ′ easily gives that g∗ is also
complete.
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The advantage of g∗ over g ′ is that we can control its Gauss
curvature. In fact, we will see that g∗ has non-negative Gauss
curvature.

If K ∗ and K denote the Gauss curvatures of g∗ and gu,
respectively, then

K − (〈N, ξ〉+ λ)2 K ∗ = ∆ log(〈N, ξ〉+ λ)
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∆ log(〈N, ξ〉+ λ) =
∆〈N, ξ〉
〈N, ξ〉+ λ

− | ∇〈N, ξ〉|2

(〈N, ξ〉+ λ)2

≤ 1
〈N, ξ〉+ λ

{(
K − f ′(u)2

f (u)2

)
〈N, ξ〉+

1
2

trace(A2)λ

}

≤ 1
〈N, ξ〉+ λ

K (〈N, ξ〉+ λ) = K ,

which gives K ∗ ≥ 0.



A uniqueness theorem 1/3

Theorem 1.-12 If f is not locally constant, has inf(f ) > 0,
satisfies (log f )′′ ≤ 0 and there exists t0 ∈ I such that f ′(t0) = 0,
then the only entire solution to(

f (u)2 −
(∂u
∂y

)2 ) ∂2u
∂x2 +

(
f (u)2 −

(∂u
∂x

)2 ) ∂2u
∂y2

+ 2
∂2u
∂x∂y

∂u
∂x

∂u
∂y
− f (u) f ′(u) |Du|2

+ 2 f (u) f ′(u)
(

f (u)2 − |Du|2
)

= 0,


(E.1)

|Du| < f (u). (E.2)

is u = t0.

12J.M. Latorre, A. Romero, New examples of Calabi-Bernstein problems for
some nonlinear equations, Diff. Geom. Appl. 15 (2001), 153–163.



A uniqueness theorem 2/3

Proof of Theorem 1. From the conformal invariance of
superharmonic functions, we have that f (t) is a positive
superharmonic function of (R2,g∗) where g∗ is the Riemannian
metric previously defined.

From a classical result by Ahlfors and Blanc-Fiala-Huber13, we
know that a complete 2-dimensional Riemannian manifold with
non-negative Gauss curvature is parabolic. Therefore, (R2,g∗)
is the parabolic and f (t) must be constant. Thus, u(x , y) equals
to the constant t0 for all (x , y) ∈ R2, with f ′(t0) = 0.

13See for instance J.L. Kazdan, Parabolicity and the Liouville property on
complete Riemannian manifolds, Aspects of Math. vol. E10, Edited by A.J.
Tromba, Friedr. Vieweg and Sohn, Bonn 1987, 153–166.
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Theorem 2.-(parametric case)14 The only complete maximal
surfaces S in a proper RW spacetime with fiber R2, which
satisfies NCC, are the spacelike slices t = t0 with f ′(t0) = 0.

Proof. Again from the result by Ahlfors and Blanc-Fiala-Huber,
we know that S is parabolic. Therefore, f (t) is constant and
t = t0 with f ′(t0) = 0.

Note that an entire spacelike graph in M is not necessarily
complete. On the other hand, A complete spacelike surface is
not necessarily a graph15

14J.M. Latorre, A. Romero, and R.M. Rubio, A. Romero, On maximal
surfaces in certain non-flat 3-dimensional Robertson-Walker spacetimes,
(preprint 2008) where a local upper integral estimate of |∇f (t)|2 is obtained.

15L.J. Alı́as, A. Romero and M. Sánchez, Uniqueness of complete
spacelike hypersurfaces of constant mean curvature in Generalized
Robertson-Walker spacetimes, General Relativity and Grav. 27 (1995),
71–84. (A sufficient condition is given in Proposition 3.3).
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A non-existence theorem

Theorem 3.- If f has inf(f ) > 0 and sup(f ) <∞, satisfies
(log f )′′ ≤ 0 and f ′ has no zero, then there exists no entire
solution to equation(

f (u)2 −
(∂u
∂y

)2 ) ∂2u
∂x2 +

(
f (u)2 −

(∂u
∂x

)2 ) ∂2u
∂y2

+ 2
∂2u
∂x∂y

∂u
∂x

∂u
∂y
− f (u) f ′(u) |Du|2

+ 2 f (u) f ′(u)
(

f (u)2 − |Du|2
)

= 0,


(E.1)

|Du| < f (u). (E.2)



Some comments on stability

Intuitively, the RW spacetime (I ×R2,−dt2 + f (t)2g) can be
thought as obtained from a perturbation of the flat metric of L3,
close to L3 if f is near the constant function 1.

For a natural topology in the subset of RW spacetimes with
fiber R2, warping function f : I −→ R, such that inf(f ) > 0 and
satisfying NCC,M, we have:

• There exist RW spacetimes inM close to L3 where equation
(A) has no solution.

• There exist RW spacetimesM close to L3 where equation
(A) has only one solution.



Extensions to the non-flat case 1/2

Theorem 4.-16 Let (F ,g) be a 2-dimensional complete
Riemannian manifold and let f : I → R be a smooth positive
function such that Inf(K F ) ≥ −(f ′)2. If f is non locally constant,
Inf(f ) > 0, (log f )′′ ≤ 0 and there exists t0 such that f ′(t0) = 0,
then the only entire solution to equation

div
( Du

f (u)
√

f (u)2− | Du |2
)

= − f ′(u)√
f (u)2− | Du |2

(
2+
| Du |2

f (u)2

)
(E.1)

| Du |< f (u), (E.2)

is u = t0.

16M. Caballero, A. Romero and R.M. Rubio, Uniqueness of maximal
surfaces in Generalized Robertson-Walker spacetimes and
Calabi-Bernstein’s type problems, J. Geom Phys. (to appear).
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Theorem 5.-17 Let (F ,g) be a 2-dimensional complete
Riemannian manifold and let f : I → R be a smooth positive
function such that Inf(K F ) ≥ −(f ′)2. If f is non locally constant,
Inf(f ) > 0, sup(f ) <∞, (log f )′′ ≤ 0 and f ′ has no zero, then
there exists no entire solution to equation

div
( Du

f (u)
√

f (u)2− | Du |2
)

= − f ′(u)√
f (u)2− | Du |2

(
2+
| Du |2

f (u)2

)
(E.1)

| Du |< f (u), (E.2)

17M. Caballero, A. Romero and R.M. Rubio, Uniqueness of maximal
surfaces in Generalized Robertson-Walker spacetimes and
Calabi-Bernstein’s type problems, J. Geom Phys. (to appear).



Moitas grazas polo vosa

amable escoita!

Muchas gracias por vuestra

amable atención!
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