1) Razonar si es verdadero o falso:

(a) $\{1.636363..., 5/7, -40.5555...\} \subset \mathbb{Q}$.

(b) 0.999999... = 1.

(c) $\exists x \in \mathbb{Z} \text{ tal que } x \notin \mathbb{Q}.$

(d) $\{\pi, \sqrt{12}, 2/3\} \subset \mathbb{R} \setminus \mathbb{Q}$.

(e) $\forall x \in \mathbb{Q}, \exists a, b \in \mathbb{Q}, b \neq 0$, tales que x = a/b.

(f) $\{x \in \mathbb{R} : x^2 - 2x + 1 = 4\} \subset \mathbb{R} \setminus \mathbb{Z}$.

2) Convertir en fracciones equivalentes sin radicales en el denominador: $\frac{3}{2\sqrt{6}}$, $\frac{2}{3\sqrt[3]{2}}$, $\frac{6}{\sqrt{5}+\sqrt{2}}$, $\frac{abc}{\sqrt{abc^3}}$, $\frac{2-\sqrt{2}}{2+\sqrt{2}}$

3) Calcular: $5\sqrt{8} - 2\sqrt{50} + \sqrt{32} - \sqrt{2}$, $\sqrt{a}\sqrt[3]{a}\sqrt[6]{a}$, $\sqrt{2\sqrt{2\sqrt{2}}}$, $\frac{\sqrt[5]{x}\sqrt{x}}{x^{1/3}}$, $\sqrt[6]{5}/\sqrt[3]{5}$, $\frac{2}{2+\sqrt{2}} - \frac{3}{3+\sqrt{3}} - \frac{6}{\sqrt{2}+\sqrt{3}}$

4) Calcular: $\log_2 8$, $\log_6 48$, $\log_{1/4} 8$, $\frac{1}{2} \log 25 - 2 \log 5 - \log 2$, $e^{\log \log e^4}$, $\log \sqrt{e} + 2 \log \sqrt[4]{e}$.

5) Resolver las siguientes ecuaciones trigonométricas en el intervalo $[0, 2\pi]$:

(a) $5 \operatorname{sen} x = 2 \cos x$.

(d) $2\cos 2x = \sqrt{3}$.

(b) $sen(3x - 3\pi/2)$.

(e) $\sin x - 2 \sin x \cos x = 0$.

(c) tg 3x + 3 = 0.

(f) $\sin x + \cos x = \sqrt{2}$.

6) Hallar la longitud de la hipotenusa de un triángulo rectángulo en caso de que el triángulo tenga:

(a) un ángulo de 30° y el cateto contiguo de 5 cm, (b) un ángulo de 60° y el cateto opuesto de 5 cm,

(c) catetos de longitudes 5 cm y $10/\sqrt{3}$ cm. ¿Son los tres triángulos iguales?

7) Descomponer en factores los polinomios: $x^3 - x$, $x^4 - x^2$, $2x^2 - x - 1$, $x^4 + 2x^3 - 3x^2 - 4x + 4$.

8) Calcular y simplificar: $\frac{x^2-9}{x+3}$, $\frac{3a^2+a}{3a^3+a^2-12a-4}$, $\frac{1}{4x^2-9} - \frac{x-3}{2x+3} - \frac{x+3}{x}$, $\left(\frac{y+2}{y+1} - \frac{y+1}{y-2}\right)\frac{y+1}{2y+5}$, $\frac{\frac{x-1}{x+2} - \frac{x+2}{x-1}}{1-\frac{1}{x-1}}$.

9) Resolver las ecuaciones: $x^4 - 10x^2 + 9 = 0$, $\frac{3x+2}{x-1} - \frac{2}{x+1} = 5$, $\sqrt{x+4} + \sqrt{x} = 4$, $x^3 - 3x^2 + 3x - 1 = 0$.

10) Resolver las inecuaciones siguientes y representar sus conjuntos de soluciones sobre la recta real: (x+5)(x+2) > 0, $1 - \frac{x+3}{x+6} \ge 0$, $\frac{2x+1}{x+2} > 0$, $0 < \frac{1}{x^2+4x+5} \le 1$, $\sin^2 x \le 0$, $\cos x \ge \frac{1}{2}$, $e^{-2x} > 0$, $\log 3x > 0$, $\log \log x < 0$, $\log x + \log(x+1) \ge 1$, $x^2 - 4|x| - 12 < 0$.

11) Resolver los sistemas de ecuaciones:

(a) $x - y = 3, \frac{1}{x} + \frac{1}{y} = \frac{7}{10}$.

(c) 2x - y = 3, $x^2 - xy + y^2 = 1$. (d) $\log x + \log 2y = 3$, $e^{x^2 + y^2} = 2$.

(b) $x - y = \frac{1}{6}, xy = \frac{1}{6}$

12) El área de un rectángulo es 1200 m² y su diagonal mide 50 m. Halla sus dimensiones.

13) La hipotenusa de un triángulo rectángulo mide 10 m. Si los catetos aumentan en 3 y 4 m la hipotenusa vale 15 m. Halla los catetos.

14) El área total de un cilindro de altura 1 m es igual al área de un círculo de radio 2 m. Halla el radio del cilindro.

15) Una chica tiene 24 años. ¿Como tiene que ser λ para que dentro de λ años su edad supere al triple de la que tenía hace λ años?