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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

“Springer Monographs in Mathematics - Geometry of Hypersurfaces”
« By TE. Cecil & PJ. Ryan, Springer, ISBN: 978-1-4939-3245-0
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Problem 1

Classify all of homogeneous hypersurfaces in HSS.
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Problem 1
Classify all of homogeneous hypersurfaces in HSS.

Problem 2

If M is a connected hypersurface with isometric Reeb flow in
HSS M, then M becomes homogeneous ?

Answer: Yes, For G,(C™+?) Berndt and Suh: Monat(2002), For
Q™ Berndt and Suh: IJM(2013), and Q™" Suh: CCM(2018),
For HSS, Berndt and Suh: CCM(2020).
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Problem 1
Classify all of homogeneous hypersurfaces in HSS.

Problem 2

If M is a connected hypersurface with isometric Reeb flow in
HSS M, then M becomes homogeneous ?

Answer: Yes, For G,(C™+?) Berndt and Suh: Monat(2002), For
Q™ Berndt and Suh: IJM(2013), and Q™" Suh: CCM(2018),
For HSS, Berndt and Suh: CCM(2020).

Problem 3

If M'is a connected contact hypersurface in Hermitian
symmetric spaces M, then M becomes homogeneous ?
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Q Hypersurfaces in Hermitian Symmetric Spaces
@ Isometric Reeb Flow in HSS
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Definition

A hypersurface M: Isometric Reeb Flow <= L.g =0 <=
g(doi X, doY) = g(X, Y) forany X, Yel' (M), where ¢; denotes
a one parameter group, which is said to be an isometric Reeb
flow of M, defined by

9% — &(a(p)).  d0(p) = p.do(p) = £(p)
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Definition

A hypersurface M: Isometric Reeb Flow <= L.g =0 <=
g(doi X, doY) = g(X, Y) forany X, Yel' (M), where ¢; denotes
a one parameter group, which is said to be an isometric Reeb
flow of M, defined by

9% — &(a(p)).  d0(p) = p.do(p) = £(p)

Leg =0 <= Vi + V=0, V{: skew-symmetric <
9(Vx& Y)+9(VyE, X) =0 <= g((6S — S¢)X,Y) =0 for
any X, Yel(M).
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Herm. Symm. Spaces with Isometric Reeb Flow

@ (A) The complex Grassmann manifolds
Gk(C) = SUr11/S(UkUr 1),

For Gx(C™*") in (A) with kK = 1 by Okumura (TAMS. 1976),
k = 2, by Berndt and Suh (Monat. 2002), and for
Q2 = S0O,,5/S0,S05, also by Berndt and Suh (IJM. 2013).
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Herm. Symm. Spaces with Isometric Reeb Flow

@ (A) The complex Grassmann manifolds
Gk(C) = SUr11/S(UkUr 1),
@ (B) The complex quadrics Q"2 = SO,,5/S0,S05, (r>3),

For Gx(C™*") in (A) with kK = 1 by Okumura (TAMS. 1976),
k = 2, by Berndt and Suh (Monat. 2002), and for
Q2 = S0O,,2/S0,S05, also by Berndt and Suh (IJM. 2013).
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Herm. Symm. Spaces with Isometric Reeb Flow

@ (A) The complex Grassmann manifolds
Gk(C) = SUr11/S(UkUr 1),
@ (B) The complex quadrics Q"2 = SO,,5/S0,S05, (r>3),
@ (C) The complex Lag. Grassmann Sp,/U,, r>3, the set of
all complex r-dim C” in H',

For Gx(C™*") in (A) with kK = 1 by Okumura (TAMS. 1976),
k = 2, by Berndt and Suh (Monat. 2002), and for
Q2 = S0O,,5/S0,S05, also by Berndt and Suh (IJM. 2013).
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Herm. Symm. Spaces with Isometric Reeb Flow

@ (A) The complex Grassmann manifolds
Gk(C) = SUr11/S(UkUr 1),

@ (B) The complex quadrics Q"2 = SO,,5/S0,S05, (r>3),

@ (C) The complex Lag. Grassmann Sp,/U,, r>3, the set of
all complex r-dim C” in H',

@ (D) The symmetric spaces SO,,/U,, (r>5), the space of
all almost complex structures on R?,

For Gx(C™*") in (A) with kK = 1 by Okumura (TAMS. 1976),
k = 2, by Berndt and Suh (Monat. 2002), and for
Q2 = S0O,,5/S0,S0y, also by Berndt and Suh (IJM. 2013).
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Herm. Symm. Spaces with Isometric Reeb Flow

@ (A) The complex Grassmann manifolds
Gk(C) = SUr11/S(UkUr 1),

@ (B) The complex quadrics Q"2 = SO,,5/S0,S05, (r>3),

@ (C) The complex Lag. Grassmann Sp,/U,, r>3, the set of
all complex r-dim C” in H',

@ (D) The symmetric spaces SO,,/U,, (r>5), the space of
all almost complex structures on R?,

@ (Eg) The complexified Cayley proj. plane Eg/SpinyoUs,

For Gx(C™*") in (A) with kK = 1 by Okumura (TAMS. 1976),
k = 2, by Berndt and Suh (Monat. 2002), and for
Q2 = S0O,,2/S0,S05, also by Berndt and Suh (IJM. 2013).
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Herm. Symm. Spaces with Isometric Reeb Flow

@ (A) The complex Grassmann manifolds
Gk(C) = SUr11/S(UkUr 1),

@ (B) The complex quadrics Q"2 = SO,,5/S0,S05, (r>3),

@ (C) The complex Lag. Grassmann Sp,/U,, r>3, the set of
all complex r-dim C” in H',

@ (D) The symmetric spaces SO,,/U,, (r>5), the space of
all almost complex structures on R?,

@ (Eg) The complexified Cayley proj. plane Eg/SpinyoUs,

@ (E7) The excep. Herm. Symmetric Spaces E7/EgUs.

For Gx(C™*") in (A) with kK = 1 by Okumura (TAMS. 1976),
k = 2, by Berndt and Suh (Monat. 2002), and for
Q2 = S0O,,2/S0,S0y, also by Berndt and Suh (IJM. 2013).
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS

Complex Grassmannians (A) in HSS

Q Hypersurfaces in Hermitian Symmetric Spaces

@ Complex Grassmannians (A) in HSS
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Complex = Grassmannians

M= G/K = SU(r +1)/SU(K)SU(r + 1 — k) = G(C™),
AT = {e —¢li < j,1<i, j<r+1},
N={oq, - ar}, ai=¢€ — €41,

AT ={ay + -+ au1<v < p<r},

A = {ay e AT <v<k<u<r},

where o, = o, + -+ ak + -+ ay.
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS

Complex Grassmannians (A) in HSS

Note that [A,| = k(r + 1 — k) = Zdim(G,(C"!)) and

ToM = @aeAEcua

Now we define two subsets
A(0) = {ow €A%y > 1 and p < 1},
A+( )= {auueA lv=1o0rpu=r1}—{ai,}.

Then it follows that

Al = AF(0)UAL(1)U{6},

where § = ay, = oy + - -+ + o,/ denotes the highest root.
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS

Complex Grassmannians (A) in HSS

¢ M — Gk((cr+1)
® I=G(C)stZcM

.. & AL=AT(0)UAL(D) U (8)

where §=a; + a; + -+ a;

& A=AL U A
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS

Complex Grassmannians (A) in HSS

® =G (C) _ +
® I=G(C)stIcM AM & A;=05(0) UAR(D) U {8}

where §=a, + az + -+ a,

& A=Ay U A
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

® M =G (CHY) 3
® I=G((C)stTcM @ AL=AE(0) U AL(D) U {8}

where §=a, + az + -+ a,

UAE
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Now let us denote by M; the tubes of radius t around X, with ¢

sufficiently small. We choose ‘Z§| for the direction of the normal

geodesic in M with (0) = o and 5(0) = %

= Jusl”

We consider the End(y")-valued Jacobi differential equation

Y’ + l_?#OY =0.

Then the shape operator S(t) of M; with respect to —+(t) is
given by
S(t) = D'(t)oD~'(t).

By the expression of the shape operator, we can assert that the
Reeb flow of a tube over a complex totally geodesic
Grassmannian G (C") in Gx(C'*") is isometric, that is

S¢ = ¢S.
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Proposition 1.4.

Let M; be the tube of radius 0 < f < % around the totally
geodesic ¥ = G(C") in M = G¢(C™*"). Then
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS

Complex Grassmannians (A) in HSS

Proposition 1.4.

Let M; be the tube of radius 0 < f < % around the totally
geodesic ¥ = G(C") in M = G¢(C™*"). Then
@ 1. M; is a Hopf hypersurface.

Y.J.Suh Real Hypersurfaces



Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS

Complex Grassmannians (A) in HSS

Proposition 1.4.

Let M; be the tube of radius 0 < f < f around the totally
geodesic ¥ = G(C") in M = G¢(C™*"). Then

@ 1. M; is a Hopf hypersurface.

@ 2. Principal curvature spaces and multiplicities are given

principal curvature multiplicity eigenspace
o= fcot(ft) 1 To = Jig
8= f cot(T t) 2(k—1) Tg = VOOZ
A= — \/5 an( 2) 2(r — k) Th=T,%
uw=20 2(k —1)(r — k) TH:TC]Z
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS

Complex Grassmannians (A) in HSS

Proposition 1.4.

Let M; be the tube of radius 0 < f < f around the totally
geodesic ¥ = G(C") in M = G¢(C™*"). Then

@ 1. M; is a Hopf hypersurface.

@ 2. Principal curvature spaces and multiplicities are given

principal curvature multiplicity eigenspace
o= fcot(ft) 1 To = Jig
8= f cot(T t) 2(k—1) Tg = VOOZ
A= — \/5 an( 2) 2(r — k) Th=T,%
uw=20 2(k —1)(r — k) TH:TC]Z

@ 3. The Reeb flow on M; is isometric.
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Hypersurfaces in Hermitian Symmetric Spaces
Isometric Reeb Flow in HSS

Complex Grassmannians (A) in HSS

For k = 1 (Okumura, Trans AMS, 1976), and k = 2 (Berndt and
Suh, Monat. fir Math. 2002). These geometric structures help
tremendously for explicit tensor calculus.

This time, by using structure theory of real and complex
semi-simple Lie algebras we prove the following

Theorem 1.5. (Berndt and Suh, CCM, 2020)

Let M be a connected orientable real hypersurface in
complex Grassmannians G, (C'*"). Then the Reeb flow on M
is isometric <= M is a tube over a complex totally geodesic
Grassmannian G, (C’) in Gx(C™*1).
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Motivated by the above facts and all of documents mentioned
above, we have the following

Theorem A (Berndt and Suh, CCM, 2020)

Let M be a real hypersurface in Hermitian symmetric space M
of compact type. If the Reeb flow on M is isometric, then M is
congruent to an open part of a tube of radius 0 < f < %

around the totally geodesic submanifold X in M, where

Conversely, the Reeb flow of any such tube is isometric.
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Motivated by the above facts and all of documents mentioned
above, we have the following

Theorem A (Berndt and Suh, CCM, 2020)

Let M be a real hypersurface in Hermitian symmetric space M
of compact type. If the Reeb flow on M is isometric, then M is
congruent to an open part of a tube of radius 0 < f < %
around the totally geodesic submanifold X in M, where

@ 1. M=CP*'and & = CPX, r>1, 0<k<r,

Conversely, the Reeb flow of any such tube is isometric.
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Motivated by the above facts and all of documents mentioned
above, we have the following

Theorem A (Berndt and Suh, CCM, 2020)

Let M be a real hypersurface in Hermitian symmetric space M
of compact type. If the Reeb flow on M is isometric, then M is
congruent to an open part of a tube of radius 0 < f < %

around the totally geodesic submanifold X in M, where
@ 1. M=CP*'and X = CPX, r>1, 0<k<r,
@ 2. M = Gx(C™™") and X = Gk(C"), k>2, r>3,

Conversely, the Reeb flow of any such tube is isometric.
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Motivated by the above facts and all of documents mentioned
above, we have the following

Theorem A (Berndt and Suh, CCM, 2020)

Let M be a real hypersurface in Hermitian symmetric space M
of compact type. If the Reeb flow on M is isometric, then M is
congruent to an open part of a tube of radius 0 < f < %

around the totally geodesic submanifold X in M, where
@ 1. M=CP*'and X = CPX, r>1, 0<k<r,
@ 2. M = Gx(C™™") and X = Gk(C"), k>2, r>3,
@ 3. M = SO, 2/S0:S0O, and ¥ = CPX, k>3,

Conversely, the Reeb flow of any such tube is isometric.
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Hypersurfaces in Hermitian Symmetric Spaces

Isometric Reeb Flow in HSS
Complex Grassmannians (A) in HSS

Motivated by the above facts and all of documents mentioned
above, we have the following

Theorem A (Berndt and Suh, CCM, 2020)

Let M be a real hypersurface in Hermitian symmetric space M
of compact type. If the Reeb flow on M is isometric, then M is
congruent to an open part of a tube of radius 0 < f < %

around the totally geodesic submanifold X in M, where
@ 1. M=CP*!and ¥ = CPX, r>1, 0<k<r,
@ 2. M= Gk(C™") and © = G«(C"), k>2, r>3,
@ 3. M = SO, 2/S0:S0O, and ¥ = CPX, k>3,
@ 4. M= S0y, /U, and ¥ = SOy, _5/U,_4, r>5.
Conversely, the Reeb flow of any such tube is isometric.
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Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples

Contact Hypersurfaces in HSS

e Contact Hypersurfaces in HSS
@ Contact Hypersurfaces and Related Topics
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Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples

Contact Hypersurfaces in HSS

Definition of contact hypersurfaces

Definition
A hypersurface M in m-dim. Kaehler manifold /M is contact

< there exists a non-vanishing smooth function p on M such
that dn = pw. Then it is clear that nA(dn)™~"+0.

Here the 2-form dn is defined by

2dn(X, Y) =X(n(Y)) — Y(n(X)) ~ n([X. Y1)
—g((S6+ 69X, ¥)
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Contact Hypersurfaces and Related Topics
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Contact Hypersurfaces in HSS

Definition of contact hypersurfaces

Definition

A hypersurface M in m-dim. Kaehler manifold /M is contact
< there exists a non-vanishing smooth function p on M such
that dn = pw. Then it is clear that nA(dn)™~"+0.

Here dn = pw <= dn(X,Y) = pw(X,Y) = pg(¢X,Y).

Here the 2-form dn is defined by

2dn(X, Y) =X(n(Y)) — Y(n(X)) ~ n([X. Y1)
—g((S6+ 69X, Y)
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Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples

Contact Hypersurfaces in HSS

Contact structure on S3.
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Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples

Contact Hypersurfaces in HSS

A Key Proposition in Kaehler Manifold

A contact hypersurface in a Kaehler manifold is a real
hypersurface satisfying the condition:

So+ ¢S =kp, k=2p#0: constant

Proposition 2.3. (Berndt and Suh, Proc. AMS., 2015)

Let M be a contact hypersurface in a Kaehler manifold. Then
the following statements are equivalent:
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Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples

Contact Hypersurfaces in HSS

A Key Proposition in Kaehler Manifold

A contact hypersurface in a Kaehler manifold is a real
hypersurface satisfying the condition:

So+ ¢S =kp, k=2p#0: constant

Proposition 2.3. (Berndt and Suh, Proc. AMS., 2015)

Let M be a contact hypersurface in a Kaehler manifold. Then
the following statements are equivalent:

@ (i) The function « is constant,
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Contact Hypersurfaces and Related Topics
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Contact Hypersurfaces in HSS

A Key Proposition in Kaehler Manifold

A contact hypersurface in a Kaehler manifold is a real
hypersurface satisfying the condition:

So+ ¢S =kp, k=2p#0: constant

Proposition 2.3. (Berndt and Suh, Proc. AMS., 2015)

Let M be a contact hypersurface in a Kaehler manifold. Then
the following statements are equivalent:

@ (i) The function « is constant,
@ (ii) M has constant mean curvature,
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Contact Hypersurfaces in HSS

A Key Proposition in Kaehler Manifold

A contact hypersurface in a Kaehler manifold is a real
hypersurface satisfying the condition:

So+ ¢S =kp, k=2p#0: constant

Proposition 2.3. (Berndt and Suh, Proc. AMS., 2015)

Let M be a contact hypersurface in a Kaehler manifold. Then
the following statements are equivalent:

@ (i) The function « is constant,

@ (ii) M has constant mean curvature,
@ (iii) JN is an eigenvector of the normal Jacobi operator Ry.
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Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples

Contact Hypersurfaces in HSS

Complex Hyperbolic Space

Theorem 2.1. (Vernon, Tohoku, Math. J., 1987)

Let M be a connected contact real hypersurface in CH™. Then

Note. Every complete hypersurface in a complex space
form becomes a homogeneous hypersurface.
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Contact Hypersurfaces in HSS

Complex Hyperbolic Space

Theorem 2.1. (Vernon, Tohoku, Math. J., 1987)

Let M be a connected contact real hypersurface in CH™. Then
@ (A) Mis a tube around CH™ " in CH"™,

Note. Every complete hypersurface in a complex space
form becomes a homogeneous hypersurface.
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Contact Hypersurfaces in HSS

Complex Hyperbolic Space

Theorem 2.1. (Vernon, Tohoku, Math. J., 1987)

Let M be a connected contact real hypersurface in CH™. Then
@ (A) Mis a tube around CH™ " in CH"™,
@ (B) M is a tube around a totally real RH™ in CH™,

Note. Every complete hypersurface in a complex space
form becomes a homogeneous hypersurface.
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Contact Hypersurfaces in HSS

Complex Hyperbolic Space

Theorem 2.1. (Vernon, Tohoku, Math. J., 1987)

Let M be a connected contact real hypersurface in CH™. Then
@ (A) Mis a tube around CH™ " in CH"™,
@ (B) M is a tube around a totally real RH™ in CH™,
@ (C) geodesic hypersphere

Note. Every complete hypersurface in a complex space
form becomes a homogeneous hypersurface.
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Contact Hypersurfaces in HSS

Complex Hyperbolic Space

Theorem 2.1. (Vernon, Tohoku, Math. J., 1987)

Let M be a connected contact real hypersurface in CH™. Then
@ (A) Mis a tube around CH™ " in CH"™,
@ (B) M is a tube around a totally real RH™ in CH™,
@ (C) geodesic hypersphere
@ (D) a horosphere.

Note. Every complete hypersurface in a complex space
form becomes a homogeneous hypersurface.
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Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples

Contact Hypersurfaces in HSS

Complex Two-Plane Grassmannian

Theorem 2.2. (Suh, Monat. fur Math., 2006)

Let M be a contact real hypersurface in G,(C™*2), m>3, with
constant mean curvature. Then
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Contact Hypersurfaces in HSS

Complex Two-Plane Grassmannian

Theorem 2.2. (Suh, Monat. fur Math., 2006)

Let M be a contact real hypersurface in G,(C™*2), m>3, with
constant mean curvature. Then

@ (B) a tube over a totally real totally geodesic HP in
Go(C™M+2),
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Non-Compact Grassmannian

A real hypersurface M in SU, ,,/ S(U>Up) is said to be a
contact if and only if there exists a non-zero constant function p
defined on M such that

¢S+ Sp = ko, k=2p.
This formula means that for any vector fields X, Y on M
9((¢S+ Se)X,Y) =2dn(X,Y),
where dn of the 1-form 7 is defined by

2dn(X,Y) = (Vxn)Y — (Vyn)X.
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Then we give a classification of contact real hypersurfaces in
noncompact complex two-plane Grassmannian
SUs m/S(UxUp) as follows:

Theorem 2.3. (Berndt, Lee and Suh, Int. J. Math., 2013)

Let M be a connected contact hypersurface in SUz ,,/ S(U>Up),
m=>3. If the Reeb function « corresponding to the Reeb vector
field ¢ is constant along the curve of &, then M is locally
congruent to one of the following:
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Contact Hypersurfaces in HSS

Then we give a classification of contact real hypersurfaces in
noncompact complex two-plane Grassmannian
SUs m/S(UxUp) as follows:

Theorem 2.3. (Berndt, Lee and Suh, Int. J. Math., 2013)

Let M be a connected contact hypersurface in SUz ,,/ S(U>Up),
m=>3. If the Reeb function « corresponding to the Reeb vector
field ¢ is constant along the curve of &, then M is locally
congruent to one of the following:

@ (i) a horosphere with singular center at infinity of type
JXLJIX,
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Contact Hypersurfaces in HSS

Then we give a classification of contact real hypersurfaces in
noncompact complex two-plane Grassmannian
SUs m/S(UxUp) as follows:

Theorem 2.3. (Berndt, Lee and Suh, Int. J. Math., 2013)

Let M be a connected contact hypersurface in SUz ,,/ S(U>Up),
m=>3. If the Reeb function « corresponding to the Reeb vector
field ¢ is constant along the curve of &, then M is locally
congruent to one of the following:

@ (i) a horosphere with singular center at infinity of type
JXLJIX,

@ (ii) (only if m = 2k is even) a tube around the totally
geodesic embedding of the quaternionic hyperbolic space
HH~.
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Contact Hypersurfaces in HSS

A Key Proposition in Complex Quadric

For Mc Q™ we know that
RyJN = R(JN, N)N = 4JN + 2 cos(2t) AJN.

Then JN: eig. vectorof Ry < = 7 or N: 2l-principal.

Proposition 2.4

Let M be a contact hypersurface in Q" (resp. Q™"), m>3.
Then the following statements are equivalent:
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Contact Hypersurfaces in HSS

A Key Proposition in Complex Quadric

For Mc Q™ we know that
RyJN = R(JN, N)N = 4JN + 2 cos(2t) AJN.

Then JN: eig. vectorof Ry < = 7 or N: 2l-principal.

Proposition 2.4

Let M be a contact hypersurface in Q" (resp. Q™"), m>3.
Then the following statements are equivalent:

@ (i) JN is an eigenvector of Ry = R(-, N)N ,
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Contact Hypersurfaces in HSS

A Key Proposition in Complex Quadric

For Mc Q™ we know that
RyJN = R(JN, N)N = 4JN + 2 cos(2t) AJN.

Then JN: eig. vectorof Ry < = 7 or N: 2l-principal.

Proposition 2.4

Let M be a contact hypersurface in Q" (resp. Q™"), m>3.
Then the following statements are equivalent:

@ (i) JN is an eigenvector of Ry = R(-, N)N ,
@ (ii)N is 2-principal or 2(-isotropic everywhere,
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Contact Hypersurfaces in HSS

A Key Proposition in Complex Quadric

For Mc Q™ we know that
RyJN = R(JN, N)N = 4JN + 2 cos(2t) AJN.

Then JN: eig. vectorof Ry < = 7 or N: 2l-principal.

Proposition 2.4

Let M be a contact hypersurface in Q" (resp. Q™"), m>3.
Then the following statements are equivalent:

@ (i) JN is an eigenvector of Ry = R(-, N)N ,
@ (ii)N is 2-principal or 2(-isotropic everywhere,
@ (iii)The normal vector N is singular in Q™ (resp. in Q™).
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Contact Hypersurfaces in HSS

Contact Hypersurfaces of Type

By virtue of key Propositions and some remarks mentioned
above, first we give a classification of contact hypersurfaces in
Q™ as follows:

Theorem 3.1. (Berndt and Suh, Proc. AMS., 2015)

Let M be a connected real hypersurface with constant mean
curvature in complex quadric Q", m > 3. Then M is contact
<= M is an open part of a tube of radius 0 < r < 2{ around

the sphere S™ embedded in Q™.
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Complex Hyperbolic Quadric

We realize the complex hyperbolic quadric

Q™ ~ SO m/S0,S0p. As Q" ~ RH? = SO, 2/S05, and
Q" ~ CH' x CH', we suppose m > 3. Let G := SO ,, be a
transvection group of Q™" and K := SO, SO, be the isotropy
group of Q™ at py := eK € Q™". Then

1 1

c:G— G, g— sgs™' with s:= 1

is an involution of G with Fix(o)y = K, and therefore
Q™ = G/K.
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Theorem 3.2.

The tube M around the totally geodesic Q7" in Q" exists
for every radius r > 0. For M the following statements hold:
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Contact Hypersurfaces in HSS

Theorem 3.2.

The tube M around the totally geodesic Q7" in Q" exists
for every radius r > 0. For M the following statements hold:

(1) Every normal vector N of M is 2(-principal.
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Contact Hypersurfaces in HSS

Theorem 3.2.

The tube M around the totally geodesic Q7" in Q" exists
for every radius r > 0. For M the following statements hold:

(1) Every normal vector N of M is 2(-principal.

(2) M has constant principal curvatures. Then the principal
curvatures and the principal curvature spaces are

\ principal curvature | curvature space | multi \
A=0 J(V(A) ©RN) m—1
p = —v2tanh(v2r) | V(A) ©RN m—1
a = —v2coth(v/2r) | RUN 1
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Contact Hypersurfaces in HSS

Theorem 3.2.

The tube M around the totally geodesic Q7" in Q" exists
for every radius r > 0. For M the following statements hold:

(1) Every normal vector N of M is 2(-principal.

(2) M has constant principal curvatures. Then the principal
curvatures and the principal curvature spaces are

\ principal curvature | curvature space | multi \
A=0 J(V(A) ©RN) m—1
p = —v2tanh(v2r) | V(A) ©RN m—1
a = —v2coth(v/2r) | RUN 1

(8) M is contact, that is, S¢ + ¢S = k.
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Contact Hypersurfaces in HSS

Theorem 3.3

The tube M around the totally geodesic RH™ in Q™" exists for
every radius r > 0. For M the following statements hold:
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Contact Hypersurfaces in HSS

Theorem 3.3

The tube M around the totally geodesic RH™ in Q™" exists for
every radius r > 0. For M the following statements hold:

(1) Every normal vector N of M is 2(-principal.
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Contact Hypersurfaces in HSS

Theorem 3.3

The tube M around the totally geodesic RH™ in Q™" exists for
every radius r > 0. For M the following statements hold:

(1) Every normal vector N of M is 2(-principal.

(2) M has constant principal curvatures. Then the principal
curvatures and the principal curvature spaces are

\ principal curvature | curvature space | multi \
A=0 J(V(A) ©RN) m—1
p=—v2coth(v2r) | V(A)© RN m—1
a = —V/2tanh(v2r) | RUN 1
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Contact Hypersurfaces in HSS

Theorem 3.3

The tube M around the totally geodesic RH™ in Q™" exists for
every radius r > 0. For M the following statements hold:

(1) Every normal vector N of M is 2(-principal.

(2) M has constant principal curvatures. Then the principal
curvatures and the principal curvature spaces are

\ principal curvature | curvature space | multi \
A=0 J(V(A) ©RN) m—1
p=—v2coth(v2r) | V(A)© RN m—1
a = —V/2tanh(v2r) | RUN 1

(8) M is contact, that is, S¢ + ¢S = k.
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The horosphere with center at infinity ~(oc) through some
point p € M is defined as

Clp.7(e0)) ={ qgeMm \ lim (d(g.7(1)) — d(p. (1)) = o} .

We consider M = G/K with the “origin” 0 := eK € M, the
Cartan decomposition g = £ & p and a Cartan subalgebra
a C p. Further consider the root system ¥ C a* and for a
positive root system Y C ¥, n:= @,y g» is anilpotent
subalgebra of g, and

g=tdadn

is an lwasawa decomposition of g.
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Contact Hypersurfaces in HSS

Now suppose that a unit vector H € a is given. Then
sy = (a © RH) @ n,

is a solvable Lie subalgebra of g.

Let Sy be the connected subgroup of AN with Lie algebra s, .
Then the orbits of the action of Sy; on M are the horospheres
of M with the center at infinity 74 (o), where ~4 is the
geodesic with v4(0) = o0 and 44(0) = H (and where we
identify p with T.M in the usual manner). In particular we have

C(0,7H(o0)) = Sp - 0,

where the shape operator of C(o0,vy(o0)) with respect to the
unit normal vector H is given by ad(H)|sy
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Contact Hypersurfaces in HSS

Geometric Structures of Horosphere
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Theorem 3.4

Let M be a horosphere in Q™" with its center at infinity being
given by an 2l-principal geodesic ~. Then the following
statements hold:
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Theorem 3.4

Let M be a horosphere in Q™" with its center at infinity being
given by an 2l-principal geodesic ~. Then the following
statements hold:

(1) Every normal vector N of M is 2(-principal.
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Theorem 3.4

Let M be a horosphere in Q™" with its center at infinity being
given by an 2l-principal geodesic ~. Then the following
statements hold:

(1) Every normal vector N of M is 2(-principal.

(2) M has constant principal curvatures. Then the principal
curvatures and the principal curvature spaces are

\ principal curvature | curvature space multi \
0 J(V(A) & RN) m—1
—V2 (V(A)eRN)@&RJIN | m
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Theorem 3.4

Let M be a horosphere in Q™" with its center at infinity being
given by an 2l-principal geodesic ~. Then the following
statements hold:

(1) Every normal vector N of M is 2(-principal.

(2) M has constant principal curvatures. Then the principal
curvatures and the principal curvature spaces are

\ principal curvature | curvature space multi \
0 J(V(A) & RN) m—1
—V2 (V(A)eRN)@&RJIN | m

(8) M is contact, that is, S¢ + ¢S = k.
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Contact hypersurfaces of type (B) in

Theorem 3.5. Suh and Klein, Anali di Mate, 2019

Let M be a connected real hypersurface with cmc in Q™

m > 3. Then M is if and only if M is an open part of one
of the following
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Contact hypersurfaces of type (B) in

Theorem 3.5. Suh and Klein, Anali di Mate, 2019

Let M be a connected real hypersurface with cmc in Q™

m > 3. Then M is if and only if M is an open part of one
of the following

@ (i)the tube of radius reR, around Q™" in Q™
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Contact hypersurfaces of type (B) in

Theorem 3.5. Suh and Klein, Anali di Mate, 2019

Let M be a connected real hypersurface with cmc in Q™

m > 3. Then M is if and only if M is an open part of one
of the following

@ (i)the tube of radius reR, around Q™" in Q™

@ (ii)the tube of radius reR around RH” in Q™" as a real
form of Q™.
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Contact hypersurfaces of type (B) in

Theorem 3.5. Suh and Klein, Anali di Mate, 2019

Let M be a connected real hypersurface with cmc in Q™

m > 3. Then M is if and only if M is an open part of one
of the following

@ (i)the tube of radius reR, around Q™" in Q™

@ (ii)the tube of radius reR around RH” in Q™" as a real
form of Q™.

@ (iii) a horosphere in Q™" with 2(-principal in Q™".
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Contact Hypersurfaces in HSS

Horosphers in Complex Hyperbolic Grassmannians

a; + = gy
Ni=Hy
@)= €1-€;
Hy =cost g; +sinte, € /]
T
—
Sk, * 0: Isometric Reeb flow ay =&
horosphere
M, = Sy, - 0: Contact horosphere
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Contact Hypersurfaces in HSS

Horosphers in Complex Hyperbolic Quadrics

M, = S, - 0: contact horosphere
with A—principal

.+ 2a,
s F =+
VZ

g=N=X=a +ta

M, =5,-0
“ Isometric Reeb flow horosphere
*, with [-isotropic
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(Tensor Analysis) (Lie Algebraic Method)

Contact Hypersurfaces in HSS
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Contact Hypersurfaces in HSSM

Proposition 4.1.

Let M be a contact hypersurface of an irreducible Hermitian
symmetric space M. Then we have do(JN) = 0.
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Contact Hypersurfaces in HSSM

Proposition 4.1.

Let M be a contact hypersurface of an irreducible Hermitian
symmetric space M. Then we have do(JN) = 0.

Proposition 4.2.

Let M be a contact hypersurface of an irreducible Hermitian
symmetric space M, n > 2. If SX = AX with X € C, then
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Contact Hypersurfaces in HSSM

Proposition 4.1.

Let M be a contact hypersurface of an irreducible Hermitian
symmetric space M. Then we have do(JN) = 0.

Proposition 4.2.

Let M be a contact hypersurface of an irreducible Hermitian
symmetric space M, n > 2. If SX = AX with X € C, then

(2(a — A) — p)da(X) = 0.
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We have the following

Proposition 4.3.

Let M be a connected orientable real hypersurface with
geodesic Reeb flow in an Hermitian symmetric space M. Then

da(IN)g((So + ¢S)X, Y) = n(X)g(RnJN, SY)
—n(Y)9(RnJN, SX) — an(X)g(RnJN, Y)
+ an(Y)g(RnJN, X) — 3g(RnJY, JSX)
+ 3g(RnJX, JSY) — g(RnY, SX) + g(RnX, SY).
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For the special case of contact hypersurfaces Proposition 4.3
implies

Proposition 4.4.

Let M be a connected orientable contact hypersurface in an
Hermitian symmetric space M. Then

pda(JIN) =g(R(X, N)N, JSX) + g(R(JX, N)N, SX)

— 2pg(R(JIX, N)N, X).

for all X e C with || X = 1.
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Summing up all of Propositions 4.1, 4.2, 4.3, and 4.4, we can
assert the folowing

Theorem 4.1. Berndt and Suh, 2020

Let M be a connected orientable contact hypersurface in an
irreducible Hermitian symmetric space M", n > 2. Then the
following statements hold:
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Contact Hypersurfaces in HSS

Summing up all of Propositions 4.1, 4.2, 4.3, and 4.4, we can
assert the folowing

Theorem 4.1. Berndt and Suh, 2020

Let M be a connected orientable contact hypersurface in an
irreducible Hermitian symmetric space M", n > 2. Then the
following statements hold:

() « is constant;
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Contact Hypersurfaces in HSS

Summing up all of Propositions 4.1, 4.2, 4.3, and 4.4, we can
assert the folowing

Theorem 4.1. Berndt and Suh, 2020

Let M be a connected orientable contact hypersurface in an
irreducible Hermitian symmetric space M", n > 2. Then the
following statements hold:

() « is constant;
(i) M has constant mean curvature;
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Summing up all of Propositions 4.1, 4.2, 4.3, and 4.4, we can
assert the folowing

Theorem 4.1. Berndt and Suh, 2020

Let M be a connected orientable contact hypersurface in an
irreducible Hermitian symmetric space M", n > 2. Then the
following statements hold:

() « is constant;
(i) M has constant mean curvature;

(i) JN is an eigenvector of the normal Jacobi operator
Ry = R(-, N)N everywhere.
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@ Contact Conjecture
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Contact Hypersurfaces in HSS

Contact Conjecture 4.2

Theorem 4.2. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and

dime (M) > 3. Then M is a contact hypersurface of M if and
only if M is a geodesic hypersphere in CP™ or an open part of a
tube of radius 0 < r < % around the real form ¥ of M, where ;
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Contact Hypersurfaces in HSS

Contact Conjecture 4.2

Theorem 4.2. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and

dime (M) > 3. Then M is a contact hypersurface of M if and
only if M is a geodesic hypersphere in CP™ or an open part of a

tube of radius 0 < r < % around the real form ¥ of M, where ;

@ () X =RPKand M = CP* (k > 3)
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Contact Hypersurfaces in HSS

Contact Conjecture 4.2

Theorem 4.2. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and

dime (M) > 3. Then M is a contact hypersurface of M if and
only if M is a geodesic hypersphere in CP™ or an open part of a

tube of radius 0 < r < % around the real form ¥ of M, where ;

@ (i) X = RP¥and M = CP* (k > 3)
@ (i) ¥ = S¥and M = G} (R¥*2) (k > 3)
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Contact Hypersurfaces in HSS

Contact Conjecture 4.2

Theorem 4.2. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and

dime (M) > 3. Then M is a contact hypersurface of M if and
only if M is a geodesic hypersphere in CP™ or an open part of a

tube of radius 0 < r < % around the real form ¥ of M, where ;

@ (i) X = RP¥and M = CP* (k > 3)
@ (i) ¥ = S¥and M = G} (R¥*2) (k > 3)
@ (iii) ¥ = HPX and M = G,(C?*2) (k > 2)
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Contact Hypersurfaces in HSS

Contact Conjecture 4.2

Theorem 4.2. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and
dimc(M) > 3. Then M is a contact hypersurface of M if and
only if M is a geodesic hypersphere in CP™ or an open part of a
tube of radius 0 < r < f around the real form X of M, where ;
@ () X =RPKand M = CP* (k > 3)

@ (i) & = SKand M = GJ (Rk*2) (k > 3)

o (iii) X = HPX and M = G,(C?(*+2) (k > 2)

@ (iv) X = OP? and M = Eg/SpinoUs.
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Contact Conjecture 4.2’

Theorem 4.2.1. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and

m = dim¢c(M) > 3. Then M is a contact hypersurface of M if
and only if M is an open part of a tube around a Kahler C-space
> which can be embedded as a complex hypersurface into M:
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Contact Hypersurfaces in HSS

Contact Conjecture 4.2’

Theorem 4.2.1. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and

m = dim¢c(M) > 3. Then M is a contact hypersurface of M if
and only if M is an open part of a tube around a Kahler C-space
> which can be embedded as a complex hypersurface into M:

@ (i) X =CP™ " and M = CP™ (m>3),
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Contact Hypersurfaces in HSS

Contact Conjecture 4.2’

Theorem 4.2.1. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and

m = dim¢c(M) > 3. Then M is a contact hypersurface of M if
and only if M is an open part of a tube around a Kahler C-space
> which can be embedded as a complex hypersurface into M:

@ ()X =CP™ ' and M = CP™ (m>3),
@ (i) X=Qm'and M =CP™ (m > 3)

Y.J.Suh Real Hypersurfaces



Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples

Contact Hypersurfaces in HSS

Contact Conjecture 4.2’

Theorem 4.2.1. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and B
m = dimc(M) > 3. Then M is a contact hypersurface of M if
and only if M is an open part of a tube around a Kahler C-space
> which can be embedded as a complex hypersurface into M:
@ ()X =CP™ ' and M = CP™ (m>3),
@ (i) X=Qm'and M =CP™ (m > 3)
@ (i) Z=Q™"and M = Q"
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Contact Hypersurfaces in HSS

Contact Conjecture 4.2’

Theorem 4.2.1. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and B
m = dimc(M) > 3. Then M is a contact hypersurface of M if
and only if M is an open part of a tube around a Kahler C-space
> which can be embedded as a complex hypersurface into M:

@ ()X =CP™ ' and M = CP™ (m>3),

@ (i) X=Qm'and M =CP™ (m > 3)

@ (i) =Q™ 'Tand M= Q"

® (V) & = Spmi1/Spm—1Uz and M = G,(C?™2) (4m>8)
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Contact Hypersurfaces in HSS

Contact Conjecture 4.2’

Theorem 4.2.1. (Berndt and Suh)

Let M be a connected real hypersurface of an irreducible
Hermitian symmetric space M of compact type and

m = dim¢c(M) > 3. Then M is a contact hypersurface of M if
and only if M is an open part of a tube around a Kahler C-space
> which can be embedded as a complex hypersurface into M:

@ ()X =CP™ ' and M = CP™ (m>3),
@ (i) X=Qm'and M =CP™ (m > 3)
@ (i) =Q™ 'Tand M= Q"
® (V) & = Spmi1/Spm—1Uz and M = G,(C?™2) (4m>8)
@ (V) X = F,/Spin;U; and M = Eg/SpinyoU; (m = 16).
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Contact Conjecture 4.3

Theorem 4.3. (Berndt and Suh)

Let M be a connected real hypersurface in Hermitian symmetric
space M of non-compact type and dimc(M) > 3. Then M is a
contact hypersurface of M if and only if M is locally congruent
to a tube of radius 0 < t < % around the real form ¥ of M,

where ;

Y.J.Suh Real Hypersurfaces



Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples

Contact Hypersurfaces in HSS

Contact Conjecture 4.3

Theorem 4.3. (Berndt and Suh)

Let M be a connected real hypersurface in Hermitian symmetric
space M of non-compact type and dimc(M) > 3. Then M is a
contact hypersurface of M if and only if M is locally congruent
to a tube of radius 0 < t < % around the real form ¥ of M,
where ;

@ () X = RHXand M = CH* (k > 3)
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Contact Conjecture 4.3

Theorem 4.3. (Berndt and Suh)

Let M be a connected real hypersurface in Hermitian symmetric
space M of non-compact type and dimc(M) > 3. Then M is a
contact hypersurface of M if and only if M is locally congruent
to a tube of radius 0 < t < % around the real form X of M,
where ;

@ () X = RHXand M = CH* (k > 3)

@ (i) Z = RHK and M = G3(Rk+2) (k > 3)
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Contact Conjecture 4.3

Theorem 4.3. (Berndt and Suh)

Let M be a connected real hypersurface in Hermitian symmetric
space M of non-compact type and dimc(M) > 3. Then M is a
contact hypersurface of M if and only if M is locally congruent
to a tube of radius 0 < t < - around the real form % of M,

V8
where ;
@ () X = RHXand M = CH* (k > 3)
@ (i) Z = RHK and M = G3(Rk+2) (k > 3)
@ (iii) £ = HH* and M = G5(C?+2) (k > 2)
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Contact Conjecture 4.3

Theorem 4.3. (Berndt and Suh)

Let M be a connected real hypersurface in Hermitian symmetric
space M of non-compact type and dimc(M) > 3. Then M is a
contact hypersurface of M if and only if M is locally congruent
to a tube of radius 0 < t < - around the real form % of M,

/8
where;
@ () X = RHXand M = CH* (k > 3)
@ (i) Z = RHK and M = G3(Rk+2) (k > 3)
@ (iii) X = HH* and M = G5(C?+2) (k > 2)
@ (iv) = = OH? and M = E;'*/SpinsoUs,
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Contact Conjecture 4.3

Theorem 4.3. (Berndt and Suh)

Let M be a connected real hypersurface in Hermitian symmetric
space M of non-compact type and dimc(M) > 3. Then M is a
contact hypersurface of M if and only if M is locally congruent
to a tube of radius 0 < t < - around the real form % of M,

V8
where ;

(
@ (i) Z = RHK and M = G3(Rk+2) (k > 3)
e (i) = = HH* and M = G3(C?+2) (k > 2)
@ (iv) = = OH? and M = E;'*/SpinsoUs,
@ (v) a horosphere.
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e Contact Hypersurfaces in HSS

@ Focal Submanifolds and Examples
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Kobayashi and Nagano’s Work

S.Kobayashi and T. Nagano (J. of Math. and Mechanics,
Vol.13-5(1964)) have asserted some totally geodesic and
totally real embedding ¥ in M as follows:

@ g =g 1Dgodgs such that
l[o—1,9-1] = 0, [g—1,90] Co—1,[9-1,81]Cgo0
[90, 90]Cg0, [g0, 91]Cg1,[91,91] =0
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Kobayashi and Nagano’s Work

S.Kobayashi and T. Nagano (J. of Math. and Mechanics,
Vol.13-5(1964)) have asserted some totally geodesic and
totally real embedding ¥ in M as follows:

@ g =g 1Dgodgs such that
l[o—1,9-1] = 0, [g—1,90] Co—1,[9-1,81]Cgo0

[90 90]C g0, [90, 81]Co1, [91,91] =0
@ There exists an element Z<c¢(gg) such that

[Z,X] = ad(Z)X = —X for any Xeg_1,
[Z,Y]=ad(Z2)Y = 0 for any Yego,
[Z, W] = ad(Z)W = W for any Weg,.
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@ There exists E. Cartan decomposition g = ¢&®p such that
go = goNEdgoNp,

g_1Dg1 = (9—1Bg1)NED(g_1Dg1)Np.
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@ There exists E. Cartan decomposition g = ¢&®p such that
go = goNEdgoNp,

g_1Dg1 = (9—1Bg1)NED(g_1Dg1)Np.

Zegonp.

Y.J.Suh Real Hypersurfaces



Contact Hypersurfaces and Related Topics

Contact Hypersurfaces in HSS St GRTEETE

Focal Submanifolds and Examples

@ There exists E. Cartan decomposition g = ¢&®p such that
go = goNEDgoNp,
g_1Dg1 = (9—1Bg1)NED(g_1Dg1)Np.
ZegoNp.
@ Let g, = t®©ip be a compact real form. Then it follows that
gu = tydmy,

[ey, Eu]Cly, [Ey, my]Cmy, [My, my]CEy.
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Here the subalgebra ¢, corresponding to the Lie group
Ky, = {keGu|Ad(k)Z = Z} and m, are respectively given by
°
€y = €NgoDi(pNgo)
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Here the subalgebra ¢, corresponding to the Lie group
Ky, = {keGu|Ad(k)Z = Z} and m, are respectively given by
°
€y = €NgoDi(pNgo)

my = EN(g_1Dg1)Di(pN(g_1Dg1)
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Here the subalgebra ¢, corresponding to the Lie group
Ky, = {keGu|Ad(k)Z = Z} and m, are respectively given by

°
£, = ENgoDi(pNgo)
°
my = EN(g_1Dg1)Di(pN(g_1Dg1)
°

t= (Eﬂgo)@(’éﬂ(g_1@g1) = $rPm,

[0, €0] o, [0, m]Cm, [m, m]CEg
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Here the subalgebra ¢, corresponding to the Lie group
Ky, = {keGu|Ad(k)Z = Z} and m, are respectively given by

°
ty = tNgo®i(pNgo)

°

my = ¢N(g_15g1)Di(pN(g-15g1)
°

t = (tNgo)@(¢N(g-1Dg1) = Lodm,

[€0, €0 CEo, [Eo, m]Cm, [m, m]CEy

°

Ho = —iZec(ty),
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Hence J = ad(Hp)|my : m, = ToM—m, = ToM is a complex
structure on m, = m@Jm, because for any Xecm,,

SX = ad(Ho)?X = —[Z,[Z, X]] = —ad(Z)?’X = —X.

We can write ¥ as a homogeneous space * = G/U. The Lie
algebra u of U is a parabolic subalgebra of g.

y=G/U M=G/U, §=g°=gdig
Y = KAN/KyAN = K/Ky, M= Gy/Ky, gu=Etdip,
where the isotropic subgroups are given by
Ko = {keK|Ad(k)Z = Z}
Ky = {keGu|Ad(k)Z = Z}
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Then we can write

Explicitly, we have

Y.J.Suh Real Hypersurfaces



Contact Hypersurfaces and Related Topics

Contact Hypersurfaces in HSS Contact Conjecture

Focal Submanifolds and Examples

Then we can write

Explicitly, we have

QF = SOk 2/SOSO

CPK = SUy41/S(UxUs)

CPK x CPk = (SUk11 x SUk11)/(S(UUy) x S(UkUy))

Go(C2K+2) = SUsy42/S(Uok Us)
Eg/ Spinio Uy

<
Il
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« =5k RP¥, CP*, HP*, OP? : RSS with rank 1
« X : totally real by the Kaehler structure j

. TDM = TDE @VUZ

c ToZ=m

* Y = Jm

=mygPm Hm, q ‘ 4

M =X, : atube over X
M: HSS
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Principal curvatures

Now let us denote by M; the tubes of radius f around ¥, with ¢

sufficiently small. We choose ‘52;' for the direction of the normal
U5

geodesic in 11 with 7(0) = 0.and §(0) = (4.

We consider the End(y")-valued Jacobi differential equation

D" + I_?,JY‘OD =0.

Then the shape operator S(t) of M; with respect to —7(t) is
given by
S(t) = D'(t)eD7'(1).
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For Y(r)edmocC ToX, and M+#QK. Then R1oY(t) = 4D(t) and
D"+ RyoD=0

gives
D(t) = (cq1 cos(2t) + cosin(2t)) Y(1),

with initial conditions D(0) = ¢; Y(0) and D'(0) = 2¢c, Y(0) =0
gives
D(t) = cos(2t) Y (1).

So
S (cos(2r)Y(r)) = Si(D(r) = —D'(r) = 2sin(2r) Y(r)

implies
L Y(r) =2tan(2r)Y(r).
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Proposition 5.2

Let M, be the tube of radius r around the totally geodesic
totally real RP* in CPX. Then
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Proposition 5.2

Let M, be the tube of radius r around the totally geodesic
totally real RP* in CPX. Then

1 M, is a Hopf hypersurface.
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Proposition 5.2

Let M, be the tube of radius r around the totally geodesic
totally real RP* in CPX. Then

1 M, is a Hopf hypersurface.
2 Principal curvature spaces and multiplicities are given

\ principal curvature | multiplicity | eigenspace \
2tan(2r) 1 Jmy
tan(r) k—1 Jmy
—cot(r) k—1 my
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Contact Hypersurfaces in HSS

Proposition 5.2

Let M, be the tube of radius r around the totally geodesic
totally real RP* in CPX. Then

1 M, is a Hopf hypersurface.
2 Principal curvature spaces and multiplicities are given

\ principal curvature | multiplicity | eigenspace \
2tan(2r) 1 Jmy
tan(r) k—1 Jmy
—cot(r) k—1 my

3 M;, is contact, S¢ + ¢S = —2 cot(2r)¢.
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Proposition 5.3.

Let M, be the tube of radius r around the totally geodesic
totally real CP* in CP“xCPX. Then
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Proposition 5.3.

Let M, be the tube of radius r around the totally geodesic
totally real CP* in CP“xCPX. Then

1 M, is a Hopf hypersurface.
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Proposition 5.3.

Let M, be the tube of radius r around the totally geodesic
totally real CP* in CP“xCPX. Then

1 M, is a Hopf hypersurface.
2 Principal curvature spaces and multiplicities are given

principal curvature | multiplicity | eigenspace
2tan(2r) 1 Jmg

tan(r) 2k —2 Jmy

0 1 Jm4
—cot(r) 2k — 2 my
—2cot(2r) 1 my
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Proposition 5.3.

Let M, be the tube of radius r around the totally geodesic
totally real CP* in CP“xCPX. Then

1 M, is a Hopf hypersurface.
2 Principal curvature spaces and multiplicities are given

principal curvature | multiplicity | eigenspace
2tan(2r) 1 Jmg

tan(r) 2k —2 Jmy

0 1 Jm4
—cot(r) 2k — 2 my
—2cot(2r) 1 my

3 M, is contact, S¢ + ¢S = —2 cot(2r)¢.
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Proposition 5.4.

Let M, be the tube of radius 0 < t < % around the totally
geodesic totally real HP* in Go(C?**2). Then
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Proposition 5.4.

Let M, be the tube of radius 0 < t < % around the totally
geodesic totally real HP* in Go(C?**2). Then
1 M, is a Hopf hypersurface.
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Proposition 5.4.

Let M, be the tube of radius 0 < t < % around the totally
geodesic totally real HP* in Go(C?**2). Then

1 M, is a Hopf hypersurface.

2 Principal curvature spaces and multiplicities are given

principal curvature | multiplicity | eigenspace
2tan(2r) 1 Jmy

tan(r) 4k — 4 Jmy

0 8 Jm4
—cot(r) 4k — 4 my
—2cot(2r) 3 my
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Proposition 5.4.

Let M, be the tube of radius 0 < t < % around the totally
geodesic totally real HP* in Go(C?**2). Then

1 M, is a Hopf hypersurface.

2 Principal curvature spaces and multiplicities are given

principal curvature | multiplicity | eigenspace
2tan(2r) 1 Jmy

tan(r) 4k — 4 Jmy

0 8 Jm4
—cot(r) 4k — 4 my
—2cot(2r) 3 my

3 M;, is contact, S¢ + ¢S = —2 cot(2r)¢.
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Proposition 5.5.

Let M, be the tube of radius r around the totally geodesic
totally real OP? in Eg/SpinioU;. Then
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Proposition 5.5.

Let M, be the tube of radius r around the totally geodesic
totally real OP? in Eg/SpinioU;. Then

1 M, is a Hopf hypersurface.
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Proposition 5.5.

Let M, be the tube of radius r around the totally geodesic
totally real OP? in Eg/SpinioU;. Then

1 M, is a Hopf hypersurface.
2 Principal curvature spaces and multiplicities are given

principal curvature | multiplicity | eigenspace
—2tan(2r) 1 Jmy

tan(r) 8 Jm

0 7 Jm4

— cot(r) 8 my
—2cot(2r) 7 my
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Proposition 5.5.

Let M, be the tube of radius r around the totally geodesic
totally real OP? in Eg/SpinioU;. Then

1 M, is a Hopf hypersurface.
2 Principal curvature spaces and multiplicities are given

principal curvature | multiplicity | eigenspace
—2tan(2r) 1 Jmy

tan(r) 8 Jm

0 7 Jm4

— cot(r) 8 my
—2cot(2r) 7 my

3 M, is contact, S¢ + ¢S = —2 cot(2r)¢.
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Proposition 5.1.

Let M, be the tube of radius r around the totally geodesic
totally real S¥ in Q*. Then
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Proposition 5.1.

Let M, be the tube of radius r around the totally geodesic
totally real S¥ in Q*. Then

(1) M, is a Hopf hypersurface.
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Contact Hypersurfaces in HSS

Proposition 5.1.

Let M, be the tube of radius r around the totally geodesic
totally real S¥ in Q*. Then

(1) M, is a Hopf hypersurface.
(2) Principal curvature spaces and multiplicities are given

\ principal curvature | multiplicity | eigenspace \
2tan(r) 1 Jmy
0 k—1 Jmy
—cot(r) k—1 my
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Contact Hypersurfaces in HSS

Proposition 5.1.

Let M, be the tube of radius r around the totally geodesic
totally real S¥ in Q*. Then

(1) M, is a Hopf hypersurface.
(2) Principal curvature spaces and multiplicities are given

\ principal curvature | multiplicity | eigenspace \
2tan(r) 1 Jmy
0 k—1 Jmy
—cot(r) k—1 my

(3) M;, is contact, Sp + ¢S = — cot(r)¢.
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Converse of the Proof

1 If tk(M) > 1, what are the constraints on the unit normal
field N ?
If M is the complex quadric, then N is singular everywhere.
Moreover, only one of possible two types of singular
vectors can occur, namely that of 2(-principal vectors.
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Converse of the Proof

1 If tk(M) > 1, what are the constraints on the unit normal
field N ?
If M is the complex quadric, then N is singular everywhere.
Moreover, only one of possible two types of singular
vectors can occur, namely that of 2(-principal vectors.

2 What are the constraints on the rank of M/ ?

Y.J.Suh Real Hypersurfaces



Contact Hypersurfaces and Related Topics
Contact Conjecture
Focal Submanifolds and Examples
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Converse of the Proof

1 If tk(M) > 1, what are the constraints on the unit normal
field N ?
If M is the complex quadric, then N is singular everywhere.
Moreover, only one of possible two types of singular

vectors can occur, namely that of 2(-principal vectors.
2 What are the constraints on the rank of M ?

3 Can we make a contradiction if rk(M) > 2 ?
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Converse of the Proof

1 If tk(M) > 1, what are the constraints on the unit normal
field N ?
If M is the complex quadric, then N is singular everywhere.
Moreover, only one of possible two types of singular
vectors can occur, namely that of 2(-principal vectors.

2 What are the constraints on the rank of M/ ?

3 Can we make a contradiction if rk(M) > 2 ?

4 After making Lie-algebraic set up of M in HSS with rank 2,
and solving Jacobi differential equation, we will calculate
all the principal curvatures of M.
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Let = be an integrable and totally real submanifold of the
holomorphic distribution C of M in M. Since X is totally real in C
such that 7,5 & T,-~ = C. Then forany X, YeT,x

[X, Y]IET,E
0 =g([X, Y],£) = —g((¢A+ AB)X, Y)
=—kg(¢X,Y).

If dimT,>>2, then g(¢X, Y) = 0. This is in a contradiction to
Y = ¢X. So rankY> <1, which means that

1>rankY = %rankC = %rankl\_/l.

Consequently, rank M <2,
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Let M be a real hypersurface in the complex quadric Q. Then
the following problems related to the Ricci tensor are proved

@ Parallel Ricci tensor VRic = 0 (Adv. Math., Suh, 2015)
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Other related topics in

Let M be a real hypersurface in the complex quadric Q. Then
the following problems related to the Ricci tensor are proved

@ Parallel Ricci tensor VRic = 0 (Adv. Math., Suh, 2015)

@ Harmonic curvature dRic = 0, that is,
(VxRic)Y = (VyRic)X (J. Math. Pures Appl., Suh, 2016)
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Other related topics in

Let M be a real hypersurface in the complex quadric Q. Then
the following problems related to the Ricci tensor are proved

@ Parallel Ricci tensor VRic = 0 (Adv. Math., Suh, 2015)

@ Harmonic curvature JRic = 0, that is,
(VxRic)Y = (VyRic)X (J. Math. Pures Appl., Suh, 2016)
@ Pseudo-anti commuting Ricci tensor, that is,
¢Ric + Ricy = k¢ and Ricci soliton problems (J. Math.
Pures Appl., Suh, 2017)
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Other related topics in

Let M be a real hypersurface in the complex quadric Q. Then
the following problems related to the Ricci tensor are proved

@ Parallel Ricci tensor VRic = 0 (Adv. Math., Suh, 2015)

@ Harmonic curvature JRic = 0, that is,
(VxRic)Y = (VyRic)X (J. Math. Pures Appl., Suh, 2016)
@ Pseudo-anti commuting Ricci tensor, that is,
¢Ric + Ricy = k¢ and Ricci soliton problems (J. Math.
Pures Appl., Suh, 2017)
@ Pseudo-Einstein real hypersurfaces, Ric = ag + bn®¢&
(Math. Nachr., Suh, 2017)
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Other related topics in

Let M be a real hypersurface in the complex quadric Q. Then
the following problems related to the Ricci tensor are proved

@ Parallel Ricci tensor VRic = 0 (Adv. Math., Suh, 2015)

@ Harmonic curvature JRic = 0, that is,
(VxRic)Y = (VyRic)X (J. Math. Pures Appl., Suh, 2016)
@ Pseudo-anti commuting Ricci tensor, that is,
¢Ric + Ricy = k¢ and Ricci soliton problems (J. Math.
Pures Appl., Suh, 2017)
@ Pseudo-Einstein real hypersurfaces, Ric = ag + bn®¢&
(Math. Nachr., Suh, 2017)

@ Reeb-parallel Ricci tensor, that is, V¢Ric = 0 (J. of Geom.
and Anal., Suh, 2019)
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Another related topics in

Let M be a real hypersurface in the complex hyperbolic quadric
Q™. Then the following problems are proved

@ Real hypersurfaces in the complex hyperbolic quadric with
Reeb parallel shape operator(Ann. Mat. Pura Appl., Suh
and Hwang, 2017)
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Another related topics in

Let M be a real hypersurface in the complex hyperbolic quadric
Q™. Then the following problems are proved
@ Real hypersurfaces in the complex hyperbolic quadric with
Reeb parallel shape operator(Ann. Mat. Pura Appl., Suh
and Hwang, 2017)
@ Real hypersurfaces in the complex hyperbolic quadric with
isometric Reeb flow(Comm. in Contemp. Math., Suh,
2018)
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Another related topics in

Let M be a real hypersurface in the complex hyperbolic quadric
Q™. Then the following problems are proved

@ Real hypersurfaces in the complex hyperbolic quadric with
Reeb parallel shape operator(Ann. Mat. Pura Appl., Suh
and Hwang, 2017)

@ Real hypersurfaces in the complex hyperbolic quadric with
isometric Reeb flow(Comm. in Contemp. Math., Suh,
2018)

@ Pseudo-anti commuting Ricci tensor, that is,
¢Ric + Ricp = ko (SCI China Math., Suh, 2019)
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Complex space form for

Let Mc (M, g) be a Kaehler manifold. Then ¢ = —JN is said to
be a Reeb vector field, and o« = g(S¢, &) a Reeb function,
where S denotes the shape opeartor defined by VyN = —SX
for any Xe T,M, xeM.

Theorem 3.6.

Let M be a real hypersurface in a complex space form M"(c),
n > 2. Then have the following:

Y.J.Suh Real Hypersurfaces



Other Topics and Constant Reeb Function

Complex space form for

Let Mc (M, g) be a Kaehler manifold. Then ¢ = —JN is said to
be a Reeb vector field, and o« = g(S¢, &) a Reeb function,
where S denotes the shape opeartor defined by VyN = —SX
for any Xe T,M, xeM.

Theorem 3.6.

Let M be a real hypersurface in a complex space form M"(c),
n > 2. Then have the following:
@ In P,(C), M is Hopf, then the Reeb function « is constant.
(1976, Maeda, JMS)
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Complex space form for

Let Mc (M, g) be a Kaehler manifold. Then ¢ = —JN is said to
be a Reeb vector field, and o« = g(S¢, &) a Reeb function,
where S denotes the shape opeartor defined by VyN = —SX
for any Xe T,M, xeM.

Theorem 3.6.

Let M be a real hypersurface in a complex space form M"(c),
n > 2. Then have the following:
@ In P,(C), M is Hopf, then the Reeb function « is constant.
(1976, Maeda, JMS)
@ In H,(C), M is Hopf, then the Reeb function « is constant.
(1990, Ki-Suh, OMJ)
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Theorem 3.7.

Let M be a real hypersurface in Complex two-plane
Grassmannian, G,(C™2), n > 2. Then the following results
hold:
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Compact Grassmannian for

Theorem 3.7.

Let M be a real hypersurface in Complex two-plane
Grassmannian, G,(C™2), n > 2. Then the following results
hold:

@ M is Hopf and g(S®,D+) = 0, then M is congruent to a
tube over G,(C*") or HP,, m = 2n. Moreover, « is
constant. (1999, Berndt-Suh, Monat.)
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Compact Grassmannian for

Theorem 3.7.

Let M be a real hypersurface in Complex two-plane
Grassmannian, G,(C™2), n > 2. Then the following results
hold:

@ M is Hopf and g(S®,D+) = 0, then M is congruent to a
tube over G,(C*") or HP,, m = 2n. Moreover, « is
constant. (1999, Berndt-Suh, Monat.)

@ M has an isometric Reeb flow, then « is constant. (2002,
Berndt-Suh, Monat.)
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Compact Grassmannian for

Theorem 3.7.

Let M be a real hypersurface in Complex two-plane
Grassmannian, G,(C™2), n > 2. Then the following results
hold:

@ M is Hopf and g(S®,D+) = 0, then M is congruent to a
tube over G,(C*") or HP,, m = 2n. Moreover, « is
constant. (1999, Berndt-Suh, Monat.)

@ M has an isometric Reeb flow, then « is constant. (2002,
Berndt-Suh, Monat.)

@ M is contact with constant mean curvature, then « is
constant. (2006, Suh, Monat.)
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Non-compact Grassmannian for

Theorem 3.8.

Let M be a real hypersurface in non-compact complex
two-plane Grassmannian, SU; ,,,/ SUz-SUp,, n > 2. Then the
following results hold:
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Non-compact Grassmannian for

Theorem 3.8.

Let M be a real hypersurface in non-compact complex
two-plane Grassmannian, SU; ,,,/ SUz-SUp,, n > 2. Then the
following results hold:

@ M is Hopf and g(S®, ') = 0, then M is congruent to a
tube over SUs p,_1/SUs>-SUp_1, HHy, m=2n, or a
horosphere. Moreover, « is constant. (2012, Berndt-Suh,
[JM.)
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Non-compact Grassmannian for

Theorem 3.8.

Let M be a real hypersurface in non-compact complex

two-plane Grassmannian, SU; ,,,/ SUz-SUp,, n > 2. Then the
following results hold:

@ M is Hopf and g(S®, ') = 0, then M is congruent to a
tube over SUs p,_1/SUs>-SUp_1, HHy, m=2n, or a

horosphere. Moreover, « is constant. (2012, Berndt-Suh,
IJM.)

@ M has an isometric Reeb flow, then « is constant. (2013,
Suh, AAM.)
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Non-compact Grassmannian for

Theorem 3.8.

Let M be a real hypersurface in non-compact complex
two-plane Grassmannian, SU; ,,,/ SUz-SUp,, n > 2. Then the
following results hold:

@ M is Hopf and g(S®, ') = 0, then M is congruent to a
tube over SUs p,_1/SUs>-SUp_1, HHy, m=2n, or a
horosphere. Moreover, « is constant. (2012, Berndt-Suh,
[JM.)

@ M has an isometric Reeb flow, then « is constant. (2013,
Suh, AAM.)

@ M is contact with constant mean curvature, then « is
constant. (2013, Berndt-Suh-Lee, IUM.)
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Complex Quadric for

Theorem 3.9.

Let M be a connected orientable real hypersurface in
complex quadric, Q" = SO, 2/S0;,-SO-, m > 2. Then the
following results hold:
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Complex Quadric for

Theorem 3.9.

Let M be a connected orientable real hypersurface in
complex quadric, Q" = SO, 2/S0;,-SO-, m > 2. Then the
following results hold:

@ M is Hopf with 2(-isotropic, then the Reeb function « is

constant. (2013, Berndt-Suh, [JM.)
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Complex Quadric for

Theorem 3.9.

Let M be a connected orientable real hypersurface in
complex quadric, Q" = SO, 2/S0;,-SO-, m > 2. Then the
following results hold:

@ M is Hopf with 2(-isotropic, then the Reeb function « is

constant. (2013, Berndt-Suh, [JM.)

@ M is Hopf with 2(-principal, then the Reeb function « is

constant. (2014, Suh, IJM.)
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Complex Hyperbolic Quadric for

Theorem 3.10.

Let M be a real hypersurface in complex hyperbolic quadric,
S0p.2/S0m-SO,, m > 2. Then the following results hold:
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Complex Hyperbolic Quadric for

Theorem 3.10.

Let M be a real hypersurface in complex hyperbolic quadric,
S0p.2/S0m-SO,, m > 2. Then the following results hold:
@ M is Isometric Reeb Flow with 2l-isotropic, then the Reeb
function « is constant. (2018, Suh, CCM.)
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Complex Hyperbolic Quadric for

Theorem 3.10.

Let M be a real hypersurface in complex hyperbolic quadric,
S0p.2/S0m-SO,, m > 2. Then the following results hold:
@ M is Isometric Reeb Flow with 2l-isotropic, then the Reeb
function « is constant. (2018, Suh, CCM.)
@ M is Contact with 2(-principal, then the Reeb function « is
constant. (2015, Berndt-Suh, PAMS.)
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Complex Hyperbolic Quadric for

Theorem 3.10.

Let M be a real hypersurface in complex hyperbolic quadric,
S0p.2/S0m-SO,, m > 2. Then the following results hold:

@ M is Isometric Reeb Flow with 2l-isotropic, then the Reeb
function « is constant. (2018, Suh, CCM.)

@ M is Contact with 2(-principal, then the Reeb function « is
constant. (2015, Berndt-Suh, PAMS.)

@ M is Hopf with 2(-principal, then the Reeb function « is
constant. (2019, Suh-Perez-Woo, PMD.)
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Complex Hyperbolic Quadric for

Theorem 3.10.

Let M be a real hypersurface in complex hyperbolic quadric,
S0p.2/S0m-SO,, m > 2. Then the following results hold:

@ M is Isometric Reeb Flow with 2l-isotropic, then the Reeb
function « is constant. (2018, Suh, CCM.)

@ M is Contact with 2(-principal, then the Reeb function « is
constant. (2015, Berndt-Suh, PAMS.)

@ M is Hopf with 2(-principal, then the Reeb function « is
constant. (2019, Suh-Perez-Woo, PMD.)

@ M is Hopf with 2(-isotropic, then is the Reeb function « is
constant ? (Problem)
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Compact HSSM for

Theorem 3.11.

Let M be a connected orientable real hypersurface in
Hermitian symmetric space of compact type, that is, Gx(C™*2),
Qm, Spm/Um, SOgm/Um, E6/Spin10-U1, and E7/E6'U1 . Then
the following statements hold:
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Compact HSSM for

Theorem 3.11.

Let M be a connected orientable real hypersurface in
Hermitian symmetric space of compact type, that is, Gx(C™*2),
Qm, Spm/Um, SOgm/Um, E6/Spin10-U1, and E7/E6'U1 . Then
the following statements hold:

@ M is Isometric Reeb Flow, then the Reeb function « is

constant. (2019, Berndt-Suh, CCM.)
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Compact HSSM for

Theorem 3.11.

Let M be a connected orientable real hypersurface in
Hermitian symmetric space of compact type, that is, Gx(C™*2),
Qm, Spm/Um, SOgm/Um, E6/Spin10-U1, and E7/E6'U1 . Then
the following statements hold:

@ M is Isometric Reeb Flow, then the Reeb function « is

constant. (2019, Berndt-Suh, CCM.)

@ Mis Contact,S¢ + ¢S = ko, k40, then the Reeb function
« is constant. (Berndt-Suh, In preprint.)
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Non-Compact HSSM for

Theorem 3.12.

Let M be a connected orientable real hypersurface in
Hermitian symmetric space of non-compact type, that is,
G;(C™2), Q™, Spm(R)/Um, SO,/ Um, Eg '*/Spinio-Uy, and
E, 2/ Es-Uy. Then the following statements hold:

Y.J.Suh Real Hypersurfaces



Other Topics and Constant Reeb Function

Non-Compact HSSM for

Theorem 3.12.

Let M be a connected orientable real hypersurface in
Hermitian symmetric space of non-compact type, that is,
G;(C™2), Q™, Spm(R)/Um, SO,/ Um, Eg '*/Spinio-Uy, and
E, 2/ Es-Uy. Then the following statements hold:

@ M is Isometric Reeb Flow, then is the Reeb function «

constant ? (Problem)
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Non-Compact HSSM for

Theorem 3.12.

Let M be a connected orientable real hypersurface in
Hermitian symmetric space of non-compact type, that is,
G;(C™2), Q™, Spm(R)/Um, SO,/ Um, Eg '*/Spinio-Uy, and
E, 2/ Es-Uy. Then the following statements hold:

@ M is Isometric Reeb Flow, then is the Reeb function «

constant ? (Problem)

@ Mis Contact,S¢ + ¢S = ko, k#0, then is the Reeb

function o constant ? (Problem)

Y.J.Suh Real Hypersurfaces



References

References |

@ J. Berndt and Y.J. Suh, Real hypersurfaces in complex
two-plane Grassmannians, Monatshefte fiir Math.
127(1999), 1-14.

Y.J.Suh Real Hypersurfaces



References

References |

@ J. Berndt and Y.J. Suh, Real hypersurfaces in complex
two-plane Grassmannians, Monatshefte fiir Math.
127(1999), 1-14.

@ J. Berndt and Y.J. Suh, Isometric flows on real
hypersurfaces in complex two-plane Grassmannians,
Monatshefte fir Math. 137(2002), 87-98.

Y.J.Suh Real Hypersurfaces



References

References |

@ J. Berndt and Y.J. Suh, Real hypersurfaces in complex
two-plane Grassmannians, Monatshefte fiir Math.
127(1999), 1-14.

@ J. Berndt and Y.J. Suh, Isometric flows on real
hypersurfaces in complex two-plane Grassmannians,
Monatshefte fir Math. 137(2002), 87-98.

@ J. Berndt and C. Olmos, On the index of symmetric
spaces, J. Reine Angew. Math., 737 (2018), 33—48.

Y.J.Suh Real Hypersurfaces



References

References |

@ J. Berndt and Y.J. Suh, Real hypersurfaces in complex
two-plane Grassmannians, Monatshefte fiir Math.
127(1999), 1-14.

@ J. Berndt and Y.J. Suh, Isometric flows on real
hypersurfaces in complex two-plane Grassmannians,
Monatshefte fir Math. 137(2002), 87-98.

@ J. Berndt and C. Olmos, On the index of symmetric
spaces, J. Reine Angew. Math., 737 (2018), 33—48.

@ S. Montiel and A. Romero, On some real hypersurfaces of
a complex hyperbolic space, Geom. Dedicata 20(1986),
245-261.

Y.J.Suh Real Hypersurfaces



References

References Il

@ M. Okumura, On some real hypersurfaces of a complex
projective space, Trans. Amer. Math. Soc. 212(2006),
355-364.

Y.J.Suh Real Hypersurfaces



References

References Il

@ M. Okumura, On some real hypersurfaces of a complex
projective space, Trans. Amer. Math. Soc. 212(2006),
355-364.

@ J.D. Perez and Y.J. Suh, Real hypersurfaces of
quaternionic projective space satisfying V. R = 0, Diff.
Geom. Appl. 7(1997), 211-217.

Y.J.Suh Real Hypersurfaces



References

References Il

@ M. Okumura, On some real hypersurfaces of a complex
projective space, Trans. Amer. Math. Soc. 212(2006),
355-364.

@ J.D. Perez and Y.J. Suh, Real hypersurfaces of
quaternionic projective space satisfying V. R = 0, Diff.
Geom. Appl. 7(1997), 211-217.

@ Y.J. Suh, Real hypersurfaces in complex two-plane

Grassmannians with harmonic curvature, Journal de Math.
Pures Appl., 100(2013), 16-33.

Y.J.Suh Real Hypersurfaces



References

References Il

@ M. Okumura, On some real hypersurfaces of a complex
projective space, Trans. Amer. Math. Soc. 212(2006),
355-364.

@ J.D. Perez and Y.J. Suh, Real hypersurfaces of
quaternionic projective space satisfying V. R = 0, Diff.
Geom. Appl. 7(1997), 211-217.

@ Y.J. Suh, Real hypersurfaces in complex two-plane
Grassmannians with harmonic curvature, Journal de Math.
Pures Appl., 100(2013), 16-33.

@ Y.J. Suh, Hypersurfaces with in
complex hyperbolic two-plane Grassmannians, Advances
in Applied Mathematics, 50(2013), 645-659.

Y.J.Suh Real Hypersurfaces



References

References lli

@ Y.J. Suh, Real hypersurfaces in the complex quadric with
parallel Ricci tensor, Advances in Mathematics, 281(2015),
886-905.

Y.J.Suh Real Hypersurfaces



References

References lli

@ Y.J. Suh, Real hypersurfaces in the complex quadric with
parallel Ricci tensor, Advances in Mathematics, 281(2015),
886-905.

@ Y.J. Suh, Real hypersurfaces in the complex quadric with
harmonic curvature, Journal de Math. Pures Appl.,
106(2016), 393-410.

Y.J.Suh Real Hypersurfaces



References

References lli

@ Y.J. Suh, Real hypersurfaces in the complex quadric with
parallel Ricci tensor, Advances in Mathematics, 281(2015),
886-905.

@ Y.J. Suh, Real hypersurfaces in the complex quadric with
harmonic curvature, Journal de Math. Pures Appl.,
106(2016), 393-410.

@ Y.J. Suh, Pseudo-anti commuting and Ricci soliton real
hypersurfaces in the complex quadric, Journal de Math.
Pures Appl., 107(2017), 429-450.

Y.J.Suh Real Hypersurfaces



References

References lli

@ Y.J. Suh, Real hypersurfaces in the complex quadric with
parallel Ricci tensor, Advances in Mathematics, 281(2015),
886-905.

@ Y.J. Suh, Real hypersurfaces in the complex quadric with
harmonic curvature, Journal de Math. Pures Appl.,
106(2016), 393-410.

@ Y.J. Suh, Pseudo-anti commuting and Ricci soliton real
hypersurfaces in the complex quadric, Journal de Math.
Pures Appl., 107(2017), 429-450.

@ Y.J. Suh, Real hypersurfaces in the complex hyperbolic
quadric with isometric Reeb flow, Comm. Contemp. Math.
20(2018), 1750031(20 pages).

Y.J.Suh Real Hypersurfaces



References

References IV

@ J. Berndt and Y.J. Suh, Real hypersurfaces in the
noncompact Grassmannians SUs ,/S(Uz-Un),
International J. of Math., 23(2012), 1250103(35 pages).

Y.J.Suh Real Hypersurfaces



References

References IV

@ J. Berndt and Y.J. Suh, Real hypersurfaces in the
noncompact Grassmannians SUs ,/S(Uz-Un),
International J. of Math., 23(2012), 1250103(35 pages).

@ J. Berndt and Y.J. Suh, Real hypersurfaces with

in complex quadrics, International J. Math.,
24(2013), 1350050(18 pages).

Y.J.Suh Real Hypersurfaces



References

References IV

@ J. Berndt and Y.J. Suh, Real hypersurfaces in the
noncompact Grassmannians SUs ,/S(Uz-Un),
International J. of Math., 23(2012), 1250103(35 pages).

@ J. Berndt and Y.J. Suh, Real hypersurfaces with

in complex quadrics, International J. Math.,
24(2013), 1350050(18 pages).

@ J. Berndt and Y.J. Suh, Real hypersurfaces in
complex quadrics, Proc. Amer. Math. Soc. 23(2015),
2637-2649.

Y.J.Suh Real Hypersurfaces



References

References IV

@ J. Berndt and Y.J. Suh, Real hypersurfaces in the
noncompact Grassmannians SUs ,/S(Uz-Un),
International J. of Math., 23(2012), 1250103(35 pages).

@ J. Berndt and Y.J. Suh, Real hypersurfaces with

in complex quadrics, International J. Math.,
24(2013), 1350050(18 pages).

@ J. Berndt and Y.J. Suh, Real hypersurfaces in
complex quadrics, Proc. Amer. Math. Soc. 23(2015),
2637-2649.

@ J. Berndt and Y.J. Suh, Real hypersurfaces with
in Hermitian symmetric spaces of compact type,
to appear in Comm. Contemp. Math. (2020), 1950039 (33

pages).



References

References V

@ J. Berndt and Y.J. Suh, real hypersurfaces in
Hermitian symmetric spaces, in preparation.

Y.J.Suh Real Hypersurfaces



References

References V

@ J. Berndt and Y.J. Suh, real hypersurfaces in
Hermitian symmetric spaces, in preparation.

@ J. Berndt, S. Console and C.E. Olmos, Submanifolds and
holonomy, Second edition. Monographs and Research
Notes in Math., Chapmann and Hall/CRC. 2016,

Y.J.Suh Real Hypersurfaces



References

References V

@ J. Berndt and Y.J. Suh, real hypersurfaces in
Hermitian symmetric spaces, in preparation.

@ J. Berndt, S. Console and C.E. Olmos, Submanifolds and
holonomy, Second edition. Monographs and Research
Notes in Math., Chapmann and Hall/CRC. 2016,

@ J. Berndt and C. Olmos, Maximal totally geodesic
submanifolds and index of symmetric spaces, J. Diff.
Geom., 104(2016), 187-217.

Y.J.Suh Real Hypersurfaces



References

References V

@ J. Berndt and Y.J. Suh, real hypersurfaces in
Hermitian symmetric spaces, in preparation.

@ J. Berndt, S. Console and C.E. Olmos, Submanifolds and
holonomy, Second edition. Monographs and Research
Notes in Math., Chapmann and Hall/CRC. 2016,

@ J. Berndt and C. Olmos, Maximal totally geodesic
submanifolds and index of symmetric spaces, J. Diff.
Geom., 104(2016), 187-217.

@ S. Klein and Y.J. Suh, Contact real hypersurfaces in the
complex hyperbolic quadric, Annali di Matematica Pura ed
Applicata 198(2019), 1481-1494.

Y.J.Suh Real Hypersurfaces



References

References VI

@ S. Helgason, Differential geometry, Lie groups, and
symmetric spaces, Graduate Studies in Math., 34,
American Math. Soc., 2001.

Y.J.Suh Real Hypersurfaces



References

References VI

@ S. Helgason, Differential geometry, Lie groups, and
symmetric spaces, Graduate Studies in Math., 34,
American Math. Soc., 2001.

@ A.W. Knapp, Lie Groups beyond an Introduction, Progress
in Math., Birkhduser, 2002,

Y.J.Suh Real Hypersurfaces



References

References VI

@ S. Helgason, Differential geometry, Lie groups, and
symmetric spaces, Graduate Studies in Math., 34,
American Math. Soc., 2001.

@ A.W. Knapp, Lie Groups beyond an Introduction, Progress
in Math., Birkhauser, 2002,

@ S. Kobayashi and K. Nomizu, Foundation of Differential
Geometry, Vol. I, A Wiley-Interscience Publ., Wiley
Classics Library Ed., 1966.

Y.J.Suh Real Hypersurfaces



References

References VI

@ S. Helgason, Differential geometry, Lie groups, and
symmetric spaces, Graduate Studies in Math., 34,
American Math. Soc., 2001.

@ A.W. Knapp, Lie Groups beyond an Introduction, Progress
in Math., Birkhduser, 2002,

@ S. Kobayashi and K. Nomizu, Foundation of Differential
Geometry, Vol. I, A Wiley-Interscience Publ., Wiley
Classics Library Ed., 1966.

@ S.Kobayashi and T. Nagano, On Filtered Lie Algebras and
Geomteric Structures I, J. of Math. and Mechanics,
13-5(1964), 875-907.

Y.J.Suh Real Hypersurfaces



ENDING

THANKS FOR YOUR
ATTENTION!




	Hypersurfaces in Hermitian Symmetric Spaces
	Isometric Reeb Flow in HSS
	Complex Grassmannians (A) in HSS

	Contact Hypersurfaces in HSS
	Contact Hypersurfaces and Related Topics
	Contact Conjecture
	Focal Submanifolds and Examples

	Other Topics and Constant Reeb Function
	References

