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@ Part |. Introduction:

o Introduction: Definition of soliton of MCF
o Introduction: A classification (gap) theorem of proper self-shrinkers
of MCF.

o Introduction: When the sphere separates a soliton.

@ Part Il. Our results: a refinement of this classification,
(Theorems 1 and 2)

© Part lll. Proof of our results:

@ Minimal immersions into the sphere and self-shrinkers
@ Proof of Theorem 1
@ Proof of Theorem 2
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Part I. Introduction: Definition of soliton of MCF. 12

Definition 1

A complete isometric immersion X : X" — R"™™ is a \-soliton of
the MCF with respect to 0 € R™™, (X € R), if and only if

H=-)xt

where X stands for the normal component of X and H is the
mean curvature vector of the immersion X.

Definition 2

A A-soliton for the MCF with respect to 0 € R™™ is called a
self-shrinker if and only if A > 0. It is called a self-expander if and
only if A < 0.
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Part I. Introduction: Definition of soliton of MCF. 2

Remark 3

Given a complete immersion X : ¥" — R"™ satisfying
H=-xX"
the family of homothetic immersions
Xe = V1 -2XtX
satisfies the equation of the MCF

{ (ZX(p, 1)) A(p,t) vpex, Vte[o,T)
X(p,0) = Xo(p), Vp € X

so X becomes the 0-slice of the family {X:}:2, of solutions of equation above.
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Part I. Introduction: Definition of soliton of MCF. 5

Example 4

@ A compact A-self-shrinker X : ¥ — R™™M js ¥ = 5”+ﬂm_1(6)

Vi

o Complete non-compact self-shrinkers:
o I x R™1 C R™™ where I is an Abresch-Langer curve
° Sk(\/g) x Rk C R"™M  generalized cylinders
o ¥ =R"C R"™™ is an Euclidean subespace, (case A = 0).
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Part I. Introduction: A classification (gap) theorem of
proper self-shrinkers of MCF. 4/

H. D. Cao and H. Li proved the following classification result for properly
immersed self-shrinkers

Theorem. H. D. Cao and H. Li, Calc. Var. 46 (2013)

Let X : ¥" — R™™™ be a complete and proper \-self-shrinker, with bounded
norm of the second fundamental form by

n+m
JAZ 7 < A,

Then X is one of the following:
RrRATmM

@ X is a round sphere S"(\/%2), (and hence ||As 2=)).
X

@ X is a cylinder Sk(\/g) x R, (and hence [JAZ" "> = \).

RA+m H

© X is an hyperplane, (and hence ||As 2=0).
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Part |. Introduction: When the sphere separates a soliton.

5/25

Definition 5
Let X : X" — R"™™ be an isometric immersion. We say that the
sphere S:’;"_I(O) separates X(X) if and only if

X(Z)N B:F”( ) # 0 and X(XZ) N (R™™\ B:F“(ﬁ)) # 0. )

Namely, there exists p, g € X such that
15(p) = distnin(0, X(p)) = |IX(p)]| < /% and
r5(q) = IX(a)ll > /5. )
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Part |. Introduction: When the sphere separates a soliton.

6/25

Definition 6
Let X : X" — R"™™ be an isometric immersion. We say that the
sphere 5:77’"_1(0) does not separate X(X) if and only if

X

X(Z)N Bi’}%”(@) =0 or X(X) N (R™+™ \ B%"(G)) = 0. /

Namely, Vp € X, we have rz(p) = || X(p)| < /% or
r5(p) = IIX()ll = v/ J
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Part |. Introduction: When the sphere separates a soliton.

7/25

A cylinder separated A cylinder separated
by one sphere by one sphere A cylinder non sep-
arated by one sphere

V. Palmer, UJI, Castell6 joint work with: V. Gimeno, UJI A rigidity theorem for self-shrinkers of MCF.



Part Il. Our results. 2

Theorem 1. V. Gimeno and V. P., JGA, 2019

Let X : X" — R"™™ be a complete and proper \-self-shrinker.

Let us suppose that the sphere 5:}}’"_1(6) does not separate X(X).
X

Then X" is compact and X : £ — S""™~1(, /T is a minimal
immersion.
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Part Il. Our results. o0

Corollary 1. M. P. Cavalcante-J.M. Espinar, Bull. London Math.
Soc. 48 (2016), V. Gimeno and V. P., JGA, 2019

Let X : ¥" — R"*1 be a complete, connected and proper

A-self-shrinker.

Let us suppose that the sphere 5:/2’"*1(0) does not separate X(X).
by

Then, X" is isometric to S” ( g)

Sketch of proof

e No separation by the sphere implies, (Theorem 1), that
X : ¥ — S /7Y is a minimal immersion.

@ The local isometry X : X" — §” ( g) among
connected /simply connected spaces becomes a Riemannian
covering and hence, an isometry.
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Part Il. Our results. 102

Theorem 2. V. Gimeno and V. P., JGA, 2019

Let X : £" — R™™ (m > 2), be a complete and proper
A-self-shrinker, such that:

i) The sphere S"-™1(0) does not separate X(X).
y

o

ii) The second fundamental form of ¥ is bounded by

n+m 5
|AET2 < S

Then, ¥ is isometric to S” (\/;)
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Part Il. Our results. 112

@ We would like to emphasize the analogy of our notion of “separation by
spheres” with the notion of “separation by planes” used in the Halfspace
theorem for self-shrinkers.

Halfspace theorem for self-shrinkers, see M. P. Cavalcante-J.M. Espinar, Bull.
London Math. Soc. 48 (2016) and S. Pigola-M. Rimoldi, Ann. Global Analysis
45 (2014)

Let P" be an hyperplane in R"™* passing through the origin. The only properly
immersed self-shrinker X" contained in one of the closed half-space determined
by Pis ¥ = P.

@ In this sense, Corollary 1 above could be stated as:

Theorem, (Corollary 1)

The only properly immersed and connected self-shrinker X" contained in one of
the closed domains determined by the sphere S” -(0), is X" = S" +(0)
Vi Vi
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Part Ill. Proof of our results. Minimal immersions into the
sphere and self-shrinkers. 12

Proposition 7 (K. Smoczyk, Int. Math. Res. Not. 48 (2005))

Let X : £" — S"*™=1(R) be a complete spherical immersion.
Then, the following affirmations are equivalent:

Q@ X : X" = S™™(R) is a minimal immersion into
Sn+mfl(R)_
Q@ X is a A- self-shrinker with A = %, i.e, R= /T
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Part Ill. Proof of our results. Minimal immersions into the
sphere and self-shrinkers. 13

Proof of Proposition 7

@ To see 1) = 2), use the equation

o P n
H):an+m = Hzg$n+m—l(R) - EX = — R X = —EXL

@ To see 2)= 1), use that X is a A-self-shrinker and the extrinsic distance
function rg(p) := distgn+m(0, X(p)) defined on X.
@ Given F(p) :=r*(p) = || X||> = R? on X, apply

Given F: ¥ — R, F € C*(X), for all x € ¥ such that r(x) > 0, we have

ATF(r(x) = (CHHR - S5 X7

+ F/r((r)E;)) (n + <X, Hzaner))
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Part Ill. Proof of our results. Theorem 1.1/

We are going to prove

Theorem 1

Let X : X" — R"™™ be a complete properly immersed
A-self-shrinker.
Let us suppose that the sphere SC/E’”*I(O) does not separate X(X).

A
Then X" is compact and X : £ — S""™=1(, /T is a minimal
immersion.
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Part Ill. Proof of our results. Theorem 1. s

Proof of Theorem 1

n+m
n
Py

;.

@ As Sz;T"’_l((_)') does not separate X(X) then X(X) C B™™(0) or
x

X(X) CR™™\ B

"o (G).

vz

@ Suppose first that X(X) C B"™(0).
PP ( )_ ﬁ( )

@ Then \/§ >r(p) Vpe L.

® Hence |IX*[? < |IX|? < 2.

@ Then, compute, (using Lemma 8 above):

AP (x) =2(n—= XX |?) >0
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Part Ill. Proof of our results. Theorem 1. 2

Proof of Theorem 1

@ As X is proper and X = x-l(B:;Tm(c“))), then X is compact and hence, by
x

Hopf's Lemma:

@ r’(x) = R? ¥x € I, so we have the spherical immersion
X : ¥ — S™™1(R), for some R < V-

@ As X is a A-soliton for the MCF, then R = \ﬁ and
X : ¥ — §"™1(/F) is minimal by Proposition 7.
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Part Ill. Proof of our results. Theorem 1. 17/

Proof of Theorem 1

.

@ Suppose now that X(X) C R™™\ B"(0)

&3
@ Then \/§ <r(p) Vpe X

@ Assume that X(X) € S""™!(R) for any radius R > 0 and that
infs r > \/§ We will reach a contradiction.

@ First, as infs r > \ﬁ we have that, forany p e

Ao
1-2
Lr(p) <0
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Part Ill. Proof of our results. Theorem 1. i

Proof of Theorem 1

@ Hence, given the extrinsic ball
Dr = X"YBE™(0)) = {p € T : | X(p)|| < R} C X and integrating

/DR (1 - %ﬁ) e2(®")ds < 0 (1)

@ Now, we need the following

Lemma 9

Let X : ¥" — R™™ be a complete properly immersed \-self-shrinker in R"™™.
Let us suppose that X(X) € S"*™*(R) for any radius R > 0.
Given the extrinsic ball Dg = X ~}(BA™™(0)), if Vol(Dg) > 0, we have, for all
R > 0:

o IFzlPde [ (1= 27) 2 (R=")do
=7 n\Vol(Dr) Vol(Dr) (2)

<
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Part Ill. Proof of our results. Theorem 1. 152

Proof of Theorem 1

@ Now, applying inequality (1) and Lemma 9, we have

Jog IAelPdo [, (1= 3r) 2" Ddo
=7 m\Vol(Dr) Vol(Dr)
which is a contradiction.

@ Hence, either X(X) C S 1(Ry) for some radius Ry > 0, or

; — /&
infs r = 1

@ In the first case, we have that X : ¥ — S""™ }(Ry) will be a spherical
immersion and, by Proposition 7, as ¥ is a A-self-shrinker, then X is
.minimall and A = g, namely, X : ¥ — S”*mfl(ﬁ) is a minimal
immersion.

<0 3)
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Part Ill. Proof of our results. Theorem 1. 22

Proof of Theorem 1

@ In the second case, if infs r = /%, then \/§ < r(p) for all p € ¥ and
hence 1 — 2r(p) <0 Vp € X.

@ Then by inequality (1) and Lemma 9 we have

_ Jog | F || dor o, (1-5r) e (RP-) 4o

< =
0<1 nA Vol(Drg) Vol(Dr)

<0 (4)

@ Therefore, 1 — 2r%(p) =0 Vp € T, so X(X) C """ !(,/%), and hence
X : ¥ — §"m1( /%) is a complete spherical immersion and a
A-self-shrinker. Then by Proposition 7, ¥ is minimal in the sphere

Sn+m71(\/§).
@ Finally, as X : £" — R""™ is proper, then ¥ = X }(S"™""'(/1)) is
compact.
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Part Ill. Proof of our results. Theorem 2. 22

We are going to prove

Let X : " — R"™™™ (m > 2), be a complete and proper
A-self-shrinker, such that:

i) The sphere S”+ﬂ'”_l(6) does not separate X(X)

Vi

ii) The second fundamental form of X is bounded by

n+m 5
472 < 2

Then, ¥ is isometric to S” (\/g) and HAH§"+"’H2 =\
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Part Ill. Proof of our results. Theorem 2. 22

Proof of Theorem 2

n+m—1

Vi

@ If the sphere S (0) does not separate X(X), then, applying Theorem

1,
@ X:(Z,8) = (S M) Bsnim-s ﬁ)) is a compact and minimal
A
immersion,

@ Hence, scaling the metric, X : (Z, 2g) = (S Y(1), gsnrm-1(1y) realizes
as a minimal immersion, with second fundamental form in the sphere
satisfying

~cn+m—1 2 n+m
A = AP = (5)
@ Hence, as by hypothesis |\AD§H+W\|2 < 2, then

(6)

~ cntm—1 2 2
|l <5
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Part Ill. Proof of our results. Theorem 2. /2

Proof of Theorem 2

@ Case |: Assume that n > 1 and m = 2. Apply following Theorem,

J. Simons-M.P. Do Carmo-S.S. Chern-S. Kobayashi Rigidity

Theorem

Let o : (£",8) — (S"*l(l),gs,ﬁl(l)) be a compact and minimal isometric immersion. Let us suppose that

~gnt+1
135 @2 < n. Then
~cn+l
o either HA; (1)H2 = 0and (X", g) is isometric to S"(1)

~5n+1(1) 2 _
e or [|AZ ||¢ = n. Then (£", g) is isometric to a generalized Clifford torus

5" = sk(4/ %) x SN=K(y/ ";k) immersed as an hypersurface in $"*1(1).
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Part Ill. Proof of our results. Theorem 2. 22

Proof of Theorem 2

@ Case Il: Assume that n > 1 and m > 3. Apply following Theorem

A. M Li and J. Li, Archiv. Math. 58, (1992). Refinement of Simons' et al.

Theorem

Let ¢ : (X", 8) — (S"*"’_l(l),gswm_l(l)) be a compact and minimal isometric

immersion, and m > 3. Let us suppose that ||Z;n+m*l(1)||2 < 2. Then,
3 ~5n+m71(1) 2 __ n %\ ic; 2 n
O cither ||A || =0 and (X", g) is isometric to S"(1)

Q or, (incase n =2 and m = 3), ||/Z\§+m_1(1)||2 =3 and (£2,g) is
isometric to the Veronese surface ¥2 = RP?(1/3) in S%(1).
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END. 2

Thank you
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Proof of our results. Lemma 9.

Proof of Lemma 9

| 2

@ Consider r* : ¥ — R, defined as r’(p) = || X(p)||?>, where
r = distznim(0,). We have that X = rV®" " r and that X™ = rV>r

@ Then, applying Lemma 8 to the radial function F(r) = r?,

AT =20+ 2(rV*" " r, Hy) )
n+m = 0112
® As (rV*""r, Hy) = -\ X+ = — L]
@ Then oo
AT =2n— 27‘“-’):H (8)

A
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Proof of our results. Lemma 9.

Proof of Lemma 9

@ Integrating on Dg = X ~}(BA™™(0)) equality above, we have

n)\VoI(DR)—/ |As|*do = 5/ A Pdo (9)
Dgr 2 Dgr

@ Apply Divergence theorem (unitary normal to dDg in X, pointed outward
is pu= ”%QH and X7 = rV*r),

VEr
AFrPdo = / V):rQ7 du
o oo T

— [ 2V rdu=2 [ IX7dn
dDp 9Dg

(10)
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Proof of our results. Lemma 9.

Proof of Lemma 9

@ Then equation (9) becomes

n/\VoI(DR)—/ |\I:Iz||2da:)\/ X7 || dp

Dg DR (11)
=X [ IVl =R [ VT rdn
dDgr 9Dgr
@ Hence o
Jo, IFsl?de R .
_ _ > 12
nA\Vol(Dr) _ nVol(Dr) /BDR IV=rlldp 2 0 (12)
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Proof of our results. Lemma 9.

Proof of Lemma 9

@ Applying the divergence theorem on Dg to the vector field e’%’2V2r2,
we obtain

/ div* (ef%’zvzrz) do = 2Re*%R2/ IVErldp.  (13)
Dg ODg

@ Hence

| As |2 do R
, Jo = / IV>rlldp
nA Vol(Dg) nVol(Dgr) Jap,

(14)

_ (Y (=3 or 2
~ 2nVol(Dr) /M,R div (e veor ) do

V. Palmer, UJI, Castell6 joint work with: V. Gimeno, UJI A rigidity theorem for self-shrinkers of MCF.



Proof of our results. Lemma 9.

Proof of Lemma 9

@ Finally, the proposition follows taking into account in equation above that

div* (ef%’zvfﬁ) =2e 2" (n - )\rz) (15)
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The bound for the norm of second fundamental form in
Theorem of Cao and Li is sharp

@ The bound A is sharp in the following sense:

@ Consider the non-compact and proper 1-self-shrinker given by
=T, xRC R*, where Mg C R? is an Abresch-Langer
curve.

@ We have that
4
IARY2 = | AF )2 = (k§)?

where kr is the geodesic curvature (— signed curvature) of
the Abresch Langer curve [, 4 C R2.
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The bound for the norm of second fundamental form in
Theorem of Cao and Li is sharp

@ But the Abresch-Langer curves [, 4 are contained in an

annulus around the origin, and they are curves with rotation
number p which touches each boundary of the annulus g

times for each pair of mutally prime positive integers p, g

such that % <P < g

@ As it is shown in the following picture

)
=

=

s
s
7

Z
Z
7

W

Z
7
7

S

=

R
X
S

FIGURE 7. A =0, B = —1 (shrinks) Abresch-Langer curve where

the values of p and ¢ are very high.
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The bound for the norm of second fundamental form in
Theorem of Cao and Li is sharp

@ It has been shown, (see H. Halldorson, Trans. Amer. Math.
Soc. 364, (2012)), that the signed curvature ki of [y q:
e Is an increasing function of the radius,
o Never changes sign and
o Takes its maximum and minimum at the same time as the
radius, k' . = ripin and k!, = Finax, where rpi, and rpay are
the inner and the outer radius of the annulus respectively.
o Moreover, ryi, take on every value in (0,1] and ryax take on
every value in [1,00)
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The bound for the norm of second fundamental form in
Theorem of Cao and Li is sharp

@ Hence, we can choose the values p and ¢ in order to have:

o A2 = (kD)2 <3

e The inner radius satisfies rpy,i, < 1, so the sphere 53(1)

separates &

@ In conclusion, if we consider bounds for ||A[§n+m||2 greater than
A, there are A-self-shrinkers satisfying this bound which are
not those identified by Cao and Li in their Theorem.
Moreover, some of these self-shrinkers can be separated.
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