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Definition 1

A complete isometric immersion X : Σn → Rn+m is a λ-soliton of
the MCF with respect to ~0 ∈ Rn+m, (λ ∈ R), if and only if

~H = −λX⊥

where X⊥ stands for the normal component of X and ~H is the
mean curvature vector of the immersion X .

Definition 2

A λ-soliton for the MCF with respect to ~0 ∈ Rn+m is called a
self-shrinker if and only if λ ≥ 0. It is called a self-expander if and
only if λ < 0.
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Remark 3

Given a complete immersion X : Σn → Rn+m satisfying

~H = −λX⊥

the family of homothetic immersions

Xt =
√

1− 2λtX

satisfies the equation of the MCF{
( ∂
∂t

X (p, t))⊥ = ~H(p, t) ∀p ∈ Σ, ∀ t ∈ [0,T )
X (p, 0) = X0(p), ∀p ∈ Σ

so X becomes the 0-slice of the family {Xt}∞t=0 of solutions of equation above.
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Example 4

A compact λ-self-shrinker X : Σn → Rn+m is Σ = Sn+m−1√
n
λ

(~0)

Complete non-compact self-shrinkers:

Γ× Rn−1 ⊆ Rn+m, where Γ is an Abresch-Langer curve

Sk(
√

k
λ )× Rn−k ⊆ Rn+m, generalized cylinders

Σ = Rn ⊆ Rn+m is an Euclidean subespace, (case λ = 0).
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H. D. Cao and H. Li proved the following classification result for properly
immersed self-shrinkers

Theorem. H. D. Cao and H. Li, Calc. Var. 46 (2013)

Let X : Σn → Rn+m be a complete and proper λ-self-shrinker, with bounded
norm of the second fundamental form by

‖ARn+m

Σ ‖2 ≤ λ,

Then Σ is one of the following:

1 Σ is a round sphere Sn(
√

n
λ

), (and hence ‖ARn+m

Σ ‖2 = λ).

2 Σ is a cylinder Sk(
√

k
λ

)× Rn−k , (and hence ‖ARn+m

Σ ‖2 = λ).

3 Σ is an hyperplane, (and hence ‖ARn+m

Σ ‖2 = 0).
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Definition 5

Let X : Σn → Rn+m be an isometric immersion. We say that the
sphere Sn+m−1√

n
λ

(~0) separates X (Σ) if and only if

X (Σ) ∩ Bn+m√
n
λ

(~0) 6= ∅ and X (Σ) ∩
(
Rn+m \ B̄n+m√

n
λ

(~0)
)
6= ∅.

Namely, there exists p, q ∈ Σ such that
r~0(p) = distRn+m(~0,X (p)) = ‖X (p)‖ <

√
n
λ and

r~0(q) = ‖X (q)‖ >
√

n
λ .
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Definition 6

Let X : Σn → Rn+m be an isometric immersion. We say that the
sphere Sn+m−1√

n
λ

(~0) does not separate X (Σ) if and only if

X (Σ) ∩ Bn+m√
n
λ

(~0) = ∅ or X (Σ) ∩
(
Rn+m \ B̄n+m√

n
λ

(~0)
)

= ∅.

Namely, ∀p ∈ Σ, we have r~0(p) = ‖X (p)‖ ≤
√

n
λ or

r~0(p) = ‖X (q)‖ ≥
√

n
λ
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by one sphere
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by one sphere

 
	

A cylinder non sep-
arated by one sphere
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Theorem 1. V. Gimeno and V. P., JGA, 2019

Let X : Σn → Rn+m be a complete and proper λ-self-shrinker.
Let us suppose that the sphere Sn+m−1√

n
λ

(~0) does not separate X (Σ).

Then Σn is compact and X : Σ→ Sn+m−1(
√

n
λ) is a minimal

immersion.
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Corollary 1. M. P. Cavalcante-J.M. Espinar, Bull. London Math.
Soc. 48 (2016), V. Gimeno and V. P., JGA, 2019

Let X : Σn → Rn+1 be a complete, connected and proper
λ-self-shrinker.
Let us suppose that the sphere Sn+m−1√

n
λ

(~0) does not separate X (Σ).

Then, Σn is isometric to Sn
(√

n
λ

)
Sketch of proof

No separation by the sphere implies, (Theorem 1), that
X : Σ→ Sn+m−1(

√
n
λ) is a minimal immersion.

The local isometry X : Σn → Sn
(√

n
λ

)
among

connected/simply connected spaces becomes a Riemannian
covering and hence, an isometry.
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Theorem 2. V. Gimeno and V. P., JGA, 2019

Let X : Σn → Rn+m, (m ≥ 2), be a complete and proper
λ-self-shrinker, such that:

i) The sphere Sn+m−1√
n
λ

(~0) does not separate X (Σ).

ii) The second fundamental form of Σ is bounded by

‖ARn+m

Σ ‖2 <
5

3
λ

Then, Σn is isometric to Sn
(√

n
λ

)
.
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We would like to emphasize the analogy of our notion of “separation by
spheres” with the notion of “separation by planes” used in the Halfspace
theorem for self-shrinkers.

Halfspace theorem for self-shrinkers, see M. P. Cavalcante-J.M. Espinar, Bull.
London Math. Soc. 48 (2016) and S. Pigola-M. Rimoldi, Ann. Global Analysis
45 (2014)

Let Pn be an hyperplane in Rn+1 passing through the origin. The only properly
immersed self-shrinker Σn contained in one of the closed half-space determined
by P is Σ = P.

In this sense, Corollary 1 above could be stated as:

Theorem, (Corollary 1)

The only properly immersed and connected self-shrinker Σn contained in one of
the closed domains determined by the sphere Sn√

n
λ

(~0), is Σn = Sn√
n
λ

(~0)
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Proposition 7 (K. Smoczyk, Int. Math. Res. Not. 48 (2005))

Let X : Σn → Sn+m−1(R) be a complete spherical immersion.
Then, the following affirmations are equivalent:

1 X : Σn → Sn+m−1(R) is a minimal immersion into
Sn+m−1(R).

2 X is a λ- self-shrinker with λ = n
R2 , i.e., R =

√
n
λ
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Proof of Proposition 7

To see 1) ⇒ 2), use the equation

~HΣ⊆Rn+m = ~HΣ⊆Sn+m−1(R) −
n

R2
X = − n

R2
X = − n

R2
X⊥

To see 2)⇒ 1), use that X is a λ-self-shrinker and the extrinsic distance
function r~0(p) := distRn+m(~0,X (p)) defined on Σ.

Given F (p) := r 2(p) = ‖X‖2 = R2 on Σ, apply

Lemma 8

Given F : Σ→ R, F ∈ C 2(Σ), for all x ∈ Σ such that r(x) > 0, we have

∆ΣF (r(x)) =
(

F ′′(r(x))

r2(x)
− F ′(r(x))

r3(x)

)
‖XT‖2

+ F ′(r(x))
r(x)

(
n + 〈X , ~HΣ⊆Rn+m〉

)
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We are going to prove

Theorem 1

Let X : Σn → Rn+m be a complete properly immersed
λ-self-shrinker.
Let us suppose that the sphere Sn+m−1√

n
λ

(~0) does not separate X (Σ).

Then Σn is compact and X : Σ→ Sn+m−1(
√

n
λ) is a minimal

immersion.
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Proof of Theorem 1

As Sn+m−1√
n
λ

(~0) does not separate X (Σ) then X (Σ) ⊆ B̄n+m√
n
λ

(~0) or

X (Σ) ⊆ Rn+m \ Bn+m√
n
λ

(~0).

Suppose first that X (Σ) ⊆ B̄n+m√
n
λ

(~0).

Then
√

n
λ
≥ r(p) ∀p ∈ Σ.

Hence ‖X⊥‖2 ≤ ‖X‖2 ≤ n
λ

.

Then, compute, (using Lemma 8 above):

4Σr 2(x) = 2(n − λ‖X⊥‖2) ≥ 0
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Proof of Theorem 1

As X is proper and Σ = X−1(B̄n+m√
n
λ

(~0)), then Σ is compact and hence, by

Hopf’s Lemma:

r 2(x) = R2 ∀x ∈ Σ, so we have the spherical immersion
X : Σ→ Sn+m−1(R), for some R ≤

√
n
λ

.

As Σ is a λ-soliton for the MCF, then R =
√

n
λ

, and

X : Σ→ Sn+m−1(
√

n
λ

) is minimal by Proposition 7.
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Proof of Theorem 1

Suppose now that X (Σ) ⊆ Rn+m \ Bn+m√
n
λ

(~0).

Then
√

n
λ
≤ r(p) ∀p ∈ Σ.

Assume that X (Σ) 6⊆ Sn+m−1(R) for any radius R > 0 and that
infΣ r >

√
n
λ

. We will reach a contradiction.

First, as infΣ r >
√

n
λ

, we have that, for any p ∈ Σ

1− λ

n
r 2(p) < 0
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Proof of Theorem 1

Hence, given the extrinsic ball
DR = X−1(Bn+m

R (~0)) = {p ∈ Σ : ‖X (p)‖ < R} ⊆ Σ and integrating∫
DR

(
1− λ

n
r 2

)
e

λ
2 (R2−r2)dσ < 0 (1)

Now, we need the following

Lemma 9

Let X : Σn → Rn+m be a complete properly immersed λ-self-shrinker in Rn+m.
Let us suppose that X (Σ) 6⊆ Sn+m−1(R) for any radius R > 0.
Given the extrinsic ball DR = X−1(Bn+m

R (~0)), if Vol(DR) > 0, we have, for all
R > 0:

0 ≤ 1−

∫
DR
‖~HΣ‖2dσ

nλVol(DR)
=

∫
DR

(
1− λ

n
r 2
)

e
λ
2 (R2−r2)dσ

Vol(DR)
(2)
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Proof of Theorem 1

Now, applying inequality (1) and Lemma 9, we have

0 ≤ 1−

∫
DR
‖~HΣ‖2dσ

nλVol(DR)
=

∫
DR

(
1− λ

n
r 2
)

e
λ
2 (R2−r2)dσ

Vol(DR)
< 0 (3)

which is a contradiction.

Hence, either X (Σ) ⊆ Sn+m−1(R0) for some radius R0 > 0, or
infΣ r =

√
n
λ

.

In the first case, we have that X : Σ→ Sn+m−1(R0) will be a spherical
immersion and, by Proposition 7, as Σ is a λ-self-shrinker, then X is
minimal and λ = n

R2
0
, namely, X : Σ→ Sn+m−1(

√
n
λ

) is a minimal
immersion.
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Proof of Theorem 1

In the second case, if infΣ r =
√

n
λ

, then
√

n
λ
≤ r(p) for all p ∈ Σ and

hence 1− λ
n

r 2(p) ≤ 0 ∀p ∈ Σ.

Then by inequality (1) and Lemma 9 we have

0 ≤ 1−

∫
DR
‖~HΣ‖2dσ

nλVol(DR)
=

∫
DR

(
1− λ

n
r 2
)

e
λ
2 (R2−r2)dσ

Vol(DR)
≤ 0 (4)

Therefore, 1− λ
n

r 2(p) = 0 ∀p ∈ Σ, so X (Σ) ⊆ Sn+m−1(
√

n
λ

), and hence

X : Σ→ Sn+m−1(
√

n
λ

) is a complete spherical immersion and a
λ-self-shrinker. Then by Proposition 7, Σ is minimal in the sphere
Sn+m−1(

√
n
λ

).

Finally, as X : Σn → Rn+m is proper, then Σ = X−1(Sn+m−1(
√

n
λ

)) is
compact.
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We are going to prove

Theorem 2

Let X : Σn → Rn+m, (m ≥ 2), be a complete and proper
λ-self-shrinker, such that:

i) The sphere Sn+m−1√
n
λ

(~0) does not separate X (Σ)

ii) The second fundamental form of Σ is bounded by

‖ARn+m

Σ ‖2 <
5

3
λ

Then, Σn is isometric to Sn
(√

n
λ

)
and ‖ARn+m

Σ ‖2 = λ.
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Proof of Theorem 2

If the sphere Sn+m−1√
n
λ

(~0) does not separate X (Σ), then, applying Theorem

1,

X : (Σ, g)→ (Sn+m−1(
√

n
λ

), g
Sn+m−1(

√
n
λ

)
) is a compact and minimal

immersion,

Hence, scaling the metric, X̃ : (Σ, λ
n

g)→ (Sn+m−1(1), gSn+m−1(1)) realizes
as a minimal immersion, with second fundamental form in the sphere
satisfying ∥∥∥Ã

Sn+m−1(1)
Σ

∥∥∥2

=
n

λ
‖ARn+m

Σ ‖2 − n (5)

Hence, as by hypothesis ‖ARn+m

Σ ‖2 < 5
3
λ, then∥∥∥Ã

Sn+m−1(1)
Σ

∥∥∥2

<
2n

3
(6)
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Proof of Theorem 2

Case I: Assume that n ≥ 1 and m = 2. Apply following Theorem,

J. Simons-M.P. Do Carmo-S.S. Chern-S. Kobayashi Rigidity
Theorem

Let ϕ : (Σn, g̃)→ (Sn+1(1), g
Sn+1(1)

) be a compact and minimal isometric immersion. Let us suppose that

‖ÃSn+1(1)
Σ

‖2 ≤ n. Then

1 either ‖ÃSn+1(1)
Σ

‖2 = 0 and (Σn, g̃) is isometric to Sn(1)

2 or ‖ÃSn+1(1)
Σ

‖2 = n. Then (Σn, g̃) is isometric to a generalized Clifford torus

Σn = Sk (
√

k
n

)× Sn−k (
√

n−k
n

) immersed as an hypersurface in Sn+1(1).
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Proof of Theorem 2

Case II: Assume that n ≥ 1 and m ≥ 3. Apply following Theorem

A. M Li and J. Li, Archiv. Math. 58, (1992). Refinement of Simons’ et al.
Theorem

Let ϕ : (Σn, g̃)→ (Sn+m−1(1), gSn+m−1(1)) be a compact and minimal isometric

immersion, and m ≥ 3. Let us suppose that ‖ÃSn+m−1(1)
Σ ‖2 ≤ 2n

3
. Then,

1 either ‖ÃSn+m−1(1)
Σ ‖2 = 0 and (Σn, g̃) is isometric to Sn(1)

2 or, (in case n = 2 and m = 3), ‖ÃSn+m−1(1)
Σ ‖2 = 4

3 and (Σ2, g̃) is

isometric to the Veronese surface Σ2 = RP2(
√

3) in S4(1).
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Thank you
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Proof of our results. Lemma 9.

Proof of Lemma 9

Consider r 2 : Σ→ R, defined as r 2(p) = ‖X (p)‖2, where

r = distRn+m(~0, ). We have that X = r∇Rn+m

r and that XT = r∇Σr

Then, applying Lemma 8 to the radial function F (r) = r 2,

∆Σr 2 = 2n + 2〈r∇Rn+m

r , ~HΣ〉 (7)

As 〈r∇Rn+m

r , ~HΣ〉 = −λ‖X⊥‖ = − ‖~HΣ‖2

λ

Then

∆Σr 2 = 2n − 2
‖~HΣ‖2

λ
(8)
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Proof of Lemma 9

Integrating on DR = X−1(Bn+m
R (~0)) equality above, we have

nλVol(DR)−
∫
DR

‖~HΣ‖2dσ =
λ

2

∫
DR

∆Σr 2dσ (9)

Apply Divergence theorem (unitary normal to ∂DR in Σ, pointed outward

is µ = ∇Σr
‖∇Σr‖ and XT = r∇Σr),∫

DR

∆Σr 2dσ =

∫
∂DR

〈∇Σr 2,
∇Σr

‖∇Σr‖〉dµ

=

∫
∂DR

2r‖∇Σr‖dµ = 2

∫
∂DR

‖XT‖dµ
(10)
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Proof of Lemma 9

Then equation (9) becomes

nλVol(DR)−
∫
DR

‖~HΣ‖2dσ = λ

∫
∂DR

‖XT‖dµ

= λ

∫
∂DR

r‖∇Σr‖dµ = λR

∫
∂DR

‖∇Σr‖dµ
(11)

Hence

1−

∫
DR
‖~HΣ‖2dσ

nλVol(DR)
=

R

n Vol(DR)

∫
∂DR

‖∇Σr‖dµ ≥ 0 (12)
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Proof of Lemma 9

Applying the divergence theorem on DR to the vector field e−
λ
2
r2

∇Σr 2,
we obtain∫

DR

div Σ
(

e−
λ
2
r2

∇Σr 2
)

dσ = 2Re−
λ
2
R2
∫
∂DR

‖∇Σr‖dµ. (13)

Hence

1−

∫
DR
‖~HΣ‖2dσ

nλVol(DR)
=

R

n Vol(DR)

∫
∂DR

‖∇Σr‖dµ

=
e

λ
2
R2

2n Vol(DR)

∫
∂DR

div Σ
(

e−
λ
2
r2

∇Σr 2
)

dσ

(14)
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Proof of Lemma 9

Finally, the proposition follows taking into account in equation above that

div Σ
(

e−
λ
2
r2

∇Σr 2
)

=2e−
λ
2
r2
(

n − λr 2
)

(15)
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The bound for the norm of second fundamental form in
Theorem of Cao and Li is sharp

The bound λ is sharp in the following sense:

Consider the non-compact and proper 1-self-shrinker given by
Σ = Γp,q × R ⊆ R4, where Γp,q ⊆ R2 is an Abresch-Langer
curve.

We have that

‖AR4

Σ ‖2 = ‖AR2

Γ ‖2 = (kΓ
g )2

where kΓ
g is the geodesic curvature (= signed curvature) of

the Abresch-Langer curve Γp,q ⊆ R2.
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The bound for the norm of second fundamental form in
Theorem of Cao and Li is sharp

But the Abresch-Langer curves Γp,q are contained in an
annulus around the origin, and they are curves with rotation
number p which touches each boundary of the annulus q
times for each pair of mutally prime positive integers p, q

such that 1
2 <

p
q <

√
2

2
As it is shown in the following picture
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The bound for the norm of second fundamental form in
Theorem of Cao and Li is sharp

It has been shown, (see H. Halldorson, Trans. Amer. Math.
Soc. 364, (2012)), that the signed curvature kΓ

g of Γp,q:

Is an increasing function of the radius,
Never changes sign and
Takes its maximum and minimum at the same time as the
radius, kΓ

min = rmin and kΓ
max = rmax , where rmin and rmax are

the inner and the outer radius of the annulus respectively.
Moreover, rmin take on every value in (0, 1] and rmax take on
every value in [1,∞)
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The bound for the norm of second fundamental form in
Theorem of Cao and Li is sharp

Hence, we can choose the values p and q in order to have:

‖AR4

Σ ‖2 = (kΓ
g )2 < 5

3

The inner radius satisfies rmin < 1, so the sphere S3(1)
separates Σ

In conclusion, if we consider bounds for ‖ARn+m

Σ ‖2 greater than
λ, there are λ-self-shrinkers satisfying this bound which are
not those identified by Cao and Li in their Theorem.
Moreover, some of these self-shrinkers can be separated.
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