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Let V be a Euclidean vector space and σ : V × V × V → R be an
alternating 3-tensor. For each x ∈ V we denote by σx the
skew-symmetric endomorphism defined by 〈σxy , z〉 := σ(x , y , z).

Definition

σ is a vector cross product in the sense of A. Gray if
|σx(y)|2 = ‖x ∧ y‖2 for all x , y ∈ V .

There are only the following two examples:

In three dimensions there exists the well-known vector product
which measures the directed area of two vectors.

The octonionic multiplication on R8 yields a vector cross
product on R7. Its stabilizer defines the exceptional
Riemannian holonomy group G2 as a subgroup of the
orthogonal group O(7).

A. Gray:
Vector cross products on Manifolds,
T. Am. Math. Soc. 141, 465 – 504 (1969).
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In order to understand the following definition, note that σ is a
vector cross product if and only if σx is a Hermitian structure (i.e.
σ2x = −Id) on the orthogonal complement x⊥ for every unit vector
x ∈ V . In particular σx1 and σx2 are conjugate in O(V ) for all unit
vectors x1 and x2.

Definition (M. Barberis, A. Moroianu, U. Semmelmann)

Let V be a Euclidean vector space. An alternating 3-tensor τ is
called a generalized vector cross product if τ 6= 0 and τx1 is
conjugate to τx2 in O(V ) for all unit vectors x1 and x2.

A different characterization of a generalized vector cross product is
the following: Let τ be a 3-form and x0 ∈ V with ‖x0‖ = 1. Let
λ1 > λ2 > · · · > denote the different eigenvalues of the square τ2x0
on TpM. In general these define continuous functions λi (x) in a
small neighbourhood of x0. Then τ is a generalized vector cross
product if and only if the λi are constant on the unit sphere S1(V ).
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Theorem (M. Barberis, A. Moroianu, U. Semmelmann)

Let V be a Euclidean vector space of dimension n.

1 If n = 2m + 1 is odd, then every generalized vector cross
product on V is, up to constant rescaling, a standard vector
cross product. Hence n = 3 or n = 7.

2 If n = 2m + 2 and there exists a generalized vector cross
product τ on V , then n = 6 and τ = σ|V×V×V , where σ is
the vector cross product on R7 = V ⊕ R.

3 In dimension n = 4m there exists no generalized vector cross
product.

M. Barberis, A. Moroianu, U. Semmelmann
Generalized vector cross products and Killing forms on
negatively curved manifolds,
Geom Dedicata DOI:10.1007/s10711-019-00467-9 (2019).
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Recall that a naturally reductive (homogeneous) space is a triple
(M, g , ∇̄) where (M, g) is a Riemannian manifold and ∇̄ is an
Ambrose-Singer connection whose torsion tensor τ is a 3-form.
Since τ is parallel with respect to the Ambrose-Singer connection,
its algebraic type is pointwise the same. Hence we will say that τ
is a generalized vector cross product if τp has this property at some
p ∈ M.

Theorem (-,G. Weingart)

The torsion tensor of a naturally reductive space M is a generalized
vector cross product if and only if:

1 dim(M) = 3;

2 dim(M) = 6 and M is a nearly Kähler 3-symmetric space;

3 dim(M) = 7 and M is a normal homogeneous nearly parallel
G2-space.
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Theorem

A six-dimensional Riemannian space M is a nearly Kähler
3-symmetric space if and only if M is a standard normal space
from the following list:

the round sphere S6 = G2/SU(3) realized as the purely
imaginary octonions of unit length and with the nearly Kähler
structure coming from the octonionic multiplication,

the complex flag manifold F (1, 2) = SU(3)/U(1)×U(1),

the complex projective space CP3 = SO(5)/SU(2)×U(1),

the product space S3 × S3 = SU(2)× SU(2)× SU(2)/SU(2)
with the 3-symmetric structure onconstructed by
Ledger-Obata.

J.-B. Butruille:
Homogeneous nearly Kähler manifolds,
arXiv:math/0612655
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Theorem

Normal homogeneous nearly parallel G2-spaces are standard
normal spaces of positive sectional curvature. They are from the
following list:

The round sphere S7 = Spin(7)/G2,

the squashed sphere Sp(2)× Sp(1)/Sp(1)× Sp(1),

Berger’s manifold V1 = SO(5)/SO(3),

Wilking’s manifold V3 = SO(3)× SU(3)/U•(2).



A distinguished class of naturally reductive homogeneous spaces Jacobi relations on Riemannian manifolds

Theorem

Normal homogeneous nearly parallel G2-spaces are standard
normal spaces of positive sectional curvature. They are from the
following list:

The round sphere S7 = Spin(7)/G2,

the squashed sphere Sp(2)× Sp(1)/Sp(1)× Sp(1),

Berger’s manifold V1 = SO(5)/SO(3),

Wilking’s manifold V3 = SO(3)× SU(3)/U•(2).



A distinguished class of naturally reductive homogeneous spaces Jacobi relations on Riemannian manifolds

Theorem

Normal homogeneous nearly parallel G2-spaces are standard
normal spaces of positive sectional curvature. They are from the
following list:

The round sphere S7 = Spin(7)/G2,

the squashed sphere Sp(2)× Sp(1)/Sp(1)× Sp(1),

Berger’s manifold V1 = SO(5)/SO(3),

Wilking’s manifold V3 = SO(3)× SU(3)/U•(2).



A distinguished class of naturally reductive homogeneous spaces Jacobi relations on Riemannian manifolds

Theorem

Normal homogeneous nearly parallel G2-spaces are standard
normal spaces of positive sectional curvature. They are from the
following list:

The round sphere S7 = Spin(7)/G2,

the squashed sphere Sp(2)× Sp(1)/Sp(1)× Sp(1),

Berger’s manifold V1 = SO(5)/SO(3),

Wilking’s manifold V3 = SO(3)× SU(3)/U•(2).



A distinguished class of naturally reductive homogeneous spaces Jacobi relations on Riemannian manifolds

T. Friedrich, I. Kath, A. Moroianu, U. Semmelmann:
On nearly parallel G2-structures,
J. Geom. Phys. 23, 259 – 286 (1997).

R. Storm:
The classification of 7- and 8-dimensional naturally reductive
spaces,
Canad. J. Math. DOI:10.4153/S0008414X19000300
(2019).

B. Wilking, W. Ziller:
Revisiting homogeneous spaces with positive curvature,
J. reine angew. Math. 738, 313 – 328 (2018).



A distinguished class of naturally reductive homogeneous spaces Jacobi relations on Riemannian manifolds

Jacobi relations on Riemannian
manifolds
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Motivation: It is known that Riemannian symmetric spaces are
characterized by the condition ∇R = 0. What other equations

satisfies the curvature tensor of some (homogeneous) Riemannian
manifold?

Fact: ∇kR = 0 for k ≥ 2 on a (complete) Riemannian manifold
implies that ∇R = 0. In order to address non-symmetric
Riemannian spaces we hence need a better idea.

K. Nomizu, H. Ozeki:
A theorem on curvature tensor fields
Proc. Natl. Acad. Sci. U.S.A. 48 no. 2, 206 – 207.
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Let M be a Riemannian manifold with Levi Civita connection ∇
and Riemannian curvature tensor R. For every geodesic γ let
Rγ : x 7→ R(x , γ̇, γ̇) denote the Jacobi operator and Ri

γ = ∇i

dt i
Rγ

the i-fold iterated covariant derivative.

Definition

A linear Jacobi relation of (even) order k is a linear dependence
relation

Rk+1
γ = a1Rk−1

γ + a2Rk−3
γ + · · ·+ ak+1Rγ (1)

for all unit-speed geodesics with real numbers ai that can be
choosen independently of γ.

Every Riemannian symmetric space satisfies a linear Jacobi relation
of order zero and vice versa. More interesting examples of linear
Jacobi relations are provided by the naturally reductive spaces
whose torsion tensor is a generalized vector cross product.
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Theorem (-,G. Weingart)

1 For a three-dimensional naturally reductive space with the
Berger metric gκ,τ we have

R3
γ = −τ2R1

γ . (2)

2 For a six-dimensional nearly Kähler 3-symmetric space with
scalar curvature scal = 30 we have

R5
γ = −5

4
R3
γ −

1

4
R1
γ . (3)

3 For a naturally reductive nearly-parallel G2-manifold with
scal = 21

8 we have

R3
γ = − 1

36
R1
γ . (4)
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Proof of the previous Theorem
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Let (M, g , ∇̄) be a naturally reductive space whose torsion 3-form
τ is a generalized vector cross product. For every unit-speed
geodesic γ : R→ M let Sym2(γ̇⊥) denote the vector bundle of
symmetric 2-tensors on the orthogonal complement of γ̇.
Furthermore we consider the skew-symmetric endomorphism field
defined by τγ := τ(γ̇, · , · ) and set

Tγ : Sym2(γ̇⊥)→ Sym2(γ̇⊥), β 7→ Tγβ
Tγβ(u, v) := 1

2

(
β(τγ u, v) + β(u, τγ v)

)
.

(5)

for all (u, v) ∈ γ̇⊥ ×R γ̇
⊥. Thus −2Tγ is the standard action of τγ

on symmetric 2-tensors.
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Let pmin(λ) denote the minimal polynomial of Tγ . Since τγ is
parallel along γ with respect to the Ambrose-Singer connection,
the coefficients of pmin(λ) are constant along γ. Since τ is a
generalized vector cross product, these coefficients do also not
depend on γ. Moreover the theorem of Cayley-Hamilton implies
that pmin(Tγ) = 0, in particular pmin(Tγ)Rγ = 0. We claim that
this yields already a linear Jacobi relation: In fact, the Riemannian
curvature tensor R is parallel with respect to the Ambrose-Singer
connection ∇̄ = ∇+ 1

2τ . Thus we have

TγRk
γ = Rk+1

γ . (6)

Therefore the polynomial algebraic identity pmin(Tγ)Rγ = 0 yields
a Jacobi relation where the numbers ai are the same as the
coefficients of pmin. This will also become clear from the examples.
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It suffices to study two cases anyway. Suppose that τ = c σ
where c is a constant and σ ∈ Ω3M is pointwise a classical
vector cross product. Then the eigenvalues of

τγ
2 on γ̇⊥ are

{± c
2 i} for every unit-geodesic γ. Thus the eigenvalues of Tγ

on Sym2(γ̇⊥) are {0,±ci} and the minimal polynomial is
given by

p(λ) := λ(λ2 + c2). (7)

For c2 = τ2 or c2 = 1
36 this yields (2) and (4).

In a similar way, if dim(M) = 6, then the eigenvalues of
τγ
2 on

γ̇⊥ are {0,±1
2 i}. Thus the eigenvalues of Tγ on Sym2(γ̇⊥)

are {0,±1
2 i ,±i} and the minimal polynomial is

p(λ) := λ(λ2 +
1

4
)(λ2 + 1) = λ5 +

5

4
λ3 +

1

4
λ. (8)

This establishes (3).
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T. Arias-Marco, A. Arvanitoyeorgos, A. Naveira:
Constancy of Jacobi osculating rank of g.o. spaces of compact
and non-compact type,
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