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Totally geodesic submanifolds in Riemannian manifolds

» Totally geodesic submanifolds in symmetric spaces rank 2.

» Reminder. A submanifold M’ of a Riemannian manifold M
is called totally geodesic, if

» the second fundamental form h of M’ — M vanishes,
or equivalently, if
» every geodesic of M’ also is a geodesic in M.
If M’ is totally geodesic, then T,M’ is curvature-invariant,
ie. RM(T,M', T,M)T,M C T,M".
» Examples.
R c R"
Skcsn
» CP* c CP"  RP* c CP”
» HP* c HP"  CP* c HP"  RP* C HP”
» MURPHY (2019): On a differentiable manifold M with
dim(M) > 4, generic Riemannian metrics on M do not

admit any totally geodesic submanifolds of dimension
>2.
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The classification problem for totally geodesic submanifolds

» Today we are interested in the following classification
problem:

Given a Riemannian symmetric space M,
find all totally geodesic submanifolds of M .

» Clearly, totally geodesic submanifolds in M come in families
by the action of /(M). In general, there exist several such
families of totally geodesic submanifolds M’.

» Classify totally geodesic submanifolds in M ?

» Up to congruence?
» Up to (local) isometry?
» Up to (local) homothety?



Known classification results for totally geodesic submfds

» All totally geodesic submanifolds are known in

» Rank 1 symmetric spaces.

Spheres, projective spaces, Cayley plane. WOLF 1963.
» Rank 2 symmetric spaces. “We have to talk.”
» No symmetric spaces of rank > 3.

» Specific types of totally geodesic submanifolds have been
classified in all (irreducible) symmetric spaces, for example:

» Reflective submanifolds. They are connected components of
the fixed point set of involutive isometries of M .
LEUNG 1974/75.

» Complex submanifolds (in Hermitian symmetric spaces).
Inara 1967.

» Maximal spheres.
MAKIKO SuMI TANAKA 1991.

» Subspaces of maximal rank.
IxkAwA / TASAKI 2000, ZHU/LIANG 2004.



Totally geodesic submanifolds in spaces of rank 2

» CHEN/NAGANO 1978: Classification to local homothety.

» First application of (M4, M_)-method (polars/meridians).
» No information about the position of the submanifolds.
» Missed some “skew” maximal totally geodesic submanifolds:

S(AVI) C @ =G (R), CPCG(C), HPC GH),
SEVI)Csp2),  S(3v21) C Ga/s0M),  S’(GV2D) C Go.

» KiMURA/TANAKA 2008: Classification global homothety.

» Refinement of the method by Chen/Nagano.
» The above “skew”" submanifolds are still missing.

» K~ 2005-09: Classification up to congruence.
» Postdoctoral Fellowship at the University College Cork
(2006-08), under the guidance of Jiirgen Berndt.
» Different methods: Root systems.
» Description of the position of submanifolds (tangent
spaces/totally geodesic embeddings).
» The missing “skew” totally geodesic submanifolds were found.



Totally geodesic submfds in Riemannian symmetric spaces

» Let M = G/K be a Riemannian symmetric space with
symmetric triple (G, K,0) and origin py :=eK € M.

» Every connected totally geodesic (t.g.) submanifold of M is
contained in a complete one, congruent to one through pg.

» Two connected, complete, t.g. submanifolds M’, M”
through py with T,,M' = T, M” are identical: M’ = M" .

» A connected, complete submanifold M’ of M with pg € M’
is t.g. if and only if it is a symmetric subspace, i.e. if there
exists a o-invariant Lie subgroup G’ of G so that
(G',G'NK,o|G’) is a symmetric triple for M.

» U C Ty M alinear subspace. There exists a
t.g. submanifold M’ C M with pg € M and T,yM' = U if
and only if U is curvature invariant (a Lie triple system),
ie. if Ry(U,U)U C U (or [[m',m'],m’] Cm’) holds.



Riemannian symmetric spaces of rank 2

» The task that is set before us is to classify the Lie triple
systems of M, for every Riemannian symmetric space M of
rank 2.

» The simply connected, irreducible Riemannian symmetric
spaces M of compact type are the following:

» The 2-Grassmannians
Q™ = G, (R™2), G(C™2) and Gy(H™?).
» The classical quotient spaces
SU(3)/S0O(3), SU(6)/Sp(3) and SO(10)/U(5).
» The exceptional spaces
Ee/(U(1) - Spin(10)), E¢/F4 and G/SO(4).
» The compact Lie groups SU(3), Sp(2) and G;.



Roots and root spaces

» Suppose that M = (G, K, o) is of compact type.

> Let g be the Lie algebra of G, o the linearisation of o.
Then ¢ = Eig(oy,1), m = Eig(oy,—1) = T,M, g=tdm
and —[[u,v],w] = Ry(u,v)w for u,v,w e m= T, M.

» Choose a Cartan subalgebra a C m. For A € a*\ {0} we let

my = {X em|VH € a:ad(H)’X = —\(H)?*- X} .
If my # {0}, X is called a root of M, and m, is its root

space. The set A C a*\ {0} of all roots is the root system.

» We have —A = A. For Hy € a with A(Hp) # 0 for all
Ae A, Ay ={ e A| X Hp) >0} is the set of positive
roots with respect to Hp. We have

m=a @ @mA.
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Example: The complex quadric

» The complex quadric
Q™ = G5 (R™2) = SO(m +2)/SO(2) x SO(m) is a
Hermitian symmetric space of rank 2.

» We can visualise the root system of Q™ with respect to a
Cartan algebra a by plotting af € a for a € A C a*:



How to describe Lie triple systems in root theory

» Let m’ C m be a Lie triple system, ¢ = [m/,m’] C ¢ and
g=¢om.

» There exists a Cartan subalgebra a of m such that
o =anm’ is a Cartan subalgebra of m’. Let A’ C (a’)* be
the root system of m’ with respect to a’, and for a € A/,
let m/, be the corresponding root space.

> Then we have d Ca

A C{Md | Xe A Nd #0}
Vae A" : m), C @ my

AEA
Ad'=a

m’:a’@@m’a.

!
acA!

» In particular for rk(m’) = rk(m):

d=a, A'CA, m,Cm,.



Lie triple systems of rank 2.

» Consider the case rk(m’) = rk(m) = 2.
Then o/ =a, A’C A and m/, C m,.
» The possibilities for m’ are further restricted by:

» A’ is invariant under its Weyl group.

> [[m;leﬁLm{y] C @a:ﬁ:ﬁ:l:'yeA’ mixiﬁi’y

> Need to evaluate the Lie bracket.

» If G is a classical Lie group, do matrix calculations in g
(or something similar).

» If G is an exceptional Lie group, consider the root system
of g€. Use dimc(g5) =1 and [Xy,X,] = cr - Xogp - The
numbers ¢y , are determined up to sign from the root system,
consistent choice of signs can be obtained. Computer algebra
is useful. ~» http://satake.sourceforge.net.

» In this way, one can classify the rank 2 Lie triple systems in
every rank 2 symmetric space.



Lie triple systems of rank 2 in the complex quadric

« O o

M' = G (RK+2)
3<k<m

M = (Sk X Sz)/ZQ
k,0>2 k+0<m

M’ = CP! x CP! = G, (R?)

M' = (S§k x S/ 7,
2<k<m-1

M’ = CP! x RP!

M’ = (S' x SY)/Z,
(a maximal flat torus)



Lie triple systems of rank 1.

» Consider the case rk(m’) =1 and rk(m) =2.
Then d is a line in the plane a.
> Is every line o/ C a possible? Take a € A’, then o’ = Raf,
and a = A|a’ for one or more A € A.
» We call o elementary, if there exists only one A € A with
Ala’ = . In this case we have \|(a')t =0, ie Meca'.
» We call @ composite, if there exist (at least) two different
A\ p €A with Mo’ =a=pula’. Then a L (M — u¥).
> Therefore
» either o’ = R\ for some A € A,
» or @/ = (R(AF — u#))* forsome \ue€ A, \#pu.
» It follows that for every space M, there exist only finitely
many possible a’.

> Still have to evaluate [[m],, m} ], m,]
(for j, k,¢ € {£1,+2}) to determine the possibilities
for ml, and m},, .



Rank 1 Lie triple systems in the complex quadric

NISNIS

W' = 3V 10)

in a special, “skew” position




The “skew” 2-sphere in @3

» We want to embed the 2-sphere M = SO(3)/SO(2) in
Q3 =S0(5)/S0(2) x SO(3) as a totally geodesic
submanifold (symmetric subspace).

» V :=End%(R3): symmetric, trace-free real (3 x 3)-matrices.
The Cartan representation is the 5-dimensional irreducible,
orthogonal, real representation

SO(3) x V = V, (B,X) — BXB' = BXB™ .

It acts on the complex quadric Q3 22 G, (V) via isometries.
» Let Zp:=R (gclm) ®R (000) € G (V).
» It turns out that the orbit M of the action of SO(3) on
G, (V) through Z, is totally geodesic, and isometric to
S2 . It is neither a complex nor a totally real submanifold of
Q(V, ), and is therefore the totally geodesic 2-sphere
that we seek.



