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Totally geodesic submanifolds in Riemannian manifolds

I Totally geodesic submanifolds in symmetric spaces rank 2.
I Reminder. A submanifold M ′ of a Riemannian manifold M

is called totally geodesic, if
I the second fundamental form h of M ′ ↪→ M vanishes,

or equivalently, if
I every geodesic of M ′ also is a geodesic in M .

If M ′ is totally geodesic, then TpM
′ is curvature-invariant,

i.e. RM(TpM
′,TpM

′)TpM
′ ⊂ TpM

′ .
I Examples.

I Rk ⊂ Rn

I Sk ⊂ Sn

I CPk ⊂ CPn RPk ⊂ CPn

I HPk ⊂ HPn CPk ⊂ HPn RPk ⊂ HPn

I Murphy (2019): On a differentiable manifold M with
dim(M) ≥ 4 , generic Riemannian metrics on M do not
admit any totally geodesic submanifolds of dimension
≥ 2 .



The classification problem for totally geodesic submanifolds

I Today we are interested in the following classification
problem:

Given a Riemannian symmetric space M ,
find all totally geodesic submanifolds of M .

I Clearly, totally geodesic submanifolds in M come in families
by the action of I (M) . In general, there exist several such
families of totally geodesic submanifolds M ′ .

I Classify totally geodesic submanifolds in M ?
I Up to congruence?
I Up to (local) isometry?
I Up to (local) homothety?



Known classification results for totally geodesic submfds

I All totally geodesic submanifolds are known in
I Rank 1 symmetric spaces.

Spheres, projective spaces, Cayley plane. Wolf 1963.
I Rank 2 symmetric spaces. “We have to talk.”
I No symmetric spaces of rank ≥ 3 .

I Specific types of totally geodesic submanifolds have been
classified in all (irreducible) symmetric spaces, for example:

I Reflective submanifolds. They are connected components of
the fixed point set of involutive isometries of M .
Leung 1974/75.

I Complex submanifolds (in Hermitian symmetric spaces).
Ihara 1967.

I Maximal spheres.
Makiko Sumi Tanaka 1991.

I Subspaces of maximal rank.
Ikawa/Tasaki 2000, Zhu/Liang 2004.



Totally geodesic submanifolds in spaces of rank 2

I Chen/Nagano 1978: Classification to local homothety.
I First application of (M+,M−)-method (polars/meridians).
I No information about the position of the submanifolds.
I Missed some “skew” maximal totally geodesic submanifolds:

S2( 1
2

√
10) ⊂ Q3 = G+

2 (R5) , CP2 ⊂ G2(C6) , HP2 ⊂ G2(H7) ,

S3( 1
2

√
10) ⊂ Sp(2) , S2( 2

3

√
21) ⊂ G2/SO(4) , S3( 2

3

√
21) ⊂ G2 .

I Kimura/Tanaka 2008: Classification global homothety.
I Refinement of the method by Chen/Nagano.
I The above “skew” submanifolds are still missing.

I K∼ 2005–09: Classification up to congruence.
I Postdoctoral Fellowship at the University College Cork

(2006–08), under the guidance of Jürgen Berndt.
I Different methods: Root systems.
I Description of the position of submanifolds (tangent

spaces/totally geodesic embeddings).
I The missing “skew” totally geodesic submanifolds were found.



Totally geodesic submfds in Riemannian symmetric spaces

I Let M = G/K be a Riemannian symmetric space with
symmetric triple (G ,K , σ) and origin p0 := eK ∈ M .

I Every connected totally geodesic (t.g.) submanifold of M is
contained in a complete one, congruent to one through p0 .

I Two connected, complete, t.g. submanifolds M ′,M ′′

through p0 with Tp0M
′ = Tp0M

′′ are identical: M ′ = M ′′ .

I A connected, complete submanifold M ′ of M with p0 ∈ M ′

is t.g. if and only if it is a symmetric subspace, i.e. if there
exists a σ-invariant Lie subgroup G ′ of G so that
(G ′,G ′ ∩ K , σ|G ′) is a symmetric triple for M ′ .

I U ⊂ Tp0M a linear subspace. There exists a
t.g. submanifold M ′ ⊂ M with p0 ∈ M ′ and Tp0M

′ = U if
and only if U is curvature invariant (a Lie triple system),
i.e. if RM(U,U)U ⊂ U (or [[m′,m′],m′] ⊂ m′ ) holds.



Riemannian symmetric spaces of rank 2

I The task that is set before us is to classify the Lie triple
systems of M , for every Riemannian symmetric space M of
rank 2.

I The simply connected, irreducible Riemannian symmetric
spaces M of compact type are the following:

I The 2-Grassmannians

Qm = G+
2 (Rm+2) , G2(Cm+2) and G2(Hm+2) .

I The classical quotient spaces

SU(3)/SO(3) , SU(6)/Sp(3) and SO(10)/U(5) .
I The exceptional spaces

E6/(U(1) · Spin(10)) , E6/F4 and G2/SO(4) .
I The compact Lie groups SU(3) , Sp(2) and G2 .



Roots and root spaces

I Suppose that M ∼= (G ,K , σ) is of compact type.

I Let g be the Lie algebra of G , σL the linearisation of σ .
Then k = Eig(σL, 1) , m = Eig(σL,−1) ∼= Tp0M , g = k⊕m
and −[[u, v ],w ] ∼= RM(u, v)w for u, v ,w ∈ m ∼= Tp0M .

I Choose a Cartan subalgebra a ⊂ m . For λ ∈ a∗ \ {0} we let

mλ =
{
X ∈ m | ∀H ∈ a : ad(H)2X = −λ(H)2 · X

}
.

If mλ 6= {0} , λ is called a root of M , and mλ is its root
space. The set ∆ ⊂ a∗ \ {0} of all roots is the root system.

I We have −∆ = ∆ . For H0 ∈ a with λ(H0) 6= 0 for all
λ ∈ ∆ , ∆+ := {λ ∈ ∆ | λ(H0) > 0} is the set of positive
roots with respect to H0 . We have

m = a ⊕
⊕
λ∈∆+

mλ .



Example: The complex quadric

I The complex quadric
Qm = G+

2 (Rm+2) = SO(m + 2)/SO(2)× SO(m) is a
Hermitian symmetric space of rank 2.

I We can visualise the root system of Qm with respect to a
Cartan algebra a by plotting α] ∈ a for α ∈ ∆ ⊂ a∗ :
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How to describe Lie triple systems in root theory
I Let m′ ⊂ m be a Lie triple system, k′ = [m′,m′] ⊂ k and

g′ = k′ ⊕m′ .
I There exists a Cartan subalgebra a of m such that

a′ = a ∩m′ is a Cartan subalgebra of m′ . Let ∆′ ⊂ (a′)∗ be
the root system of m′ with respect to a′ , and for α ∈ ∆′ ,
let m′α be the corresponding root space.

I Then we have a′ ⊂ a

∆′ ⊂
{
λ|a′

∣∣ λ ∈ ∆, λ|a′ 6= 0
}

∀α ∈ ∆′ : m′α ⊂
⊕
λ∈∆
λ|a′=α

mλ

m′ = a′ ⊕
⊕
α∈∆′+

m′α .

I In particular for rk(m′) = rk(m) :

a′ = a , ∆′ ⊂ ∆ , m′α ⊂ mα .



Lie triple systems of rank 2.

I Consider the case rk(m′) = rk(m) = 2 .
Then a′ = a , ∆′ ⊂ ∆ and m′α ⊂ mα .

I The possibilities for m′ are further restricted by:

I ∆′ is invariant under its Weyl group.
I [[m′α,m

′
β],m′γ ] ⊂

⊕
α±β±γ∈∆′ m′α±β±γ

I Need to evaluate the Lie bracket.
I If G is a classical Lie group, do matrix calculations in g

(or something similar).
I If G is an exceptional Lie group, consider the root system

of gC . Use dimC(gCλ) = 1 and [Xλ,Xµ] = cλ,µ · Xλ+µ . The
numbers cλ,µ are determined up to sign from the root system,
consistent choice of signs can be obtained. Computer algebra
is useful.  http://satake.sourceforge.net.

I In this way, one can classify the rank 2 Lie triple systems in
every rank 2 symmetric space.



Lie triple systems of rank 2 in the complex quadric
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Lie triple systems of rank 1.

I Consider the case rk(m′) = 1 and rk(m) = 2 .
Then a′ is a line in the plane a .

I Is every line a′ ⊂ a possible? Take α ∈ ∆′ , then a′ = Rα] ,
and α = λ|a′ for one or more λ ∈ ∆ .

I We call α elementary, if there exists only one λ ∈ ∆ with
λ|a′ = α . In this case we have λ|(a′)⊥ = 0 , i.e. λ] ∈ a′ .

I We call α composite, if there exist (at least) two different
λ, µ ∈ ∆ with λ|a′ = α = µ|a′ . Then a ⊥ (λ] − µ]) .

I Therefore
I either a′ = Rλ] for some λ ∈ ∆ ,
I or a′ = (R(λ] − µ]))⊥ for some λ, µ ∈ ∆ , λ 6= µ .

I It follows that for every space M , there exist only finitely
many possible a′ .

I Still have to evaluate [[m′jα,m
′
kα],m′`α]

(for j , k , ` ∈ {±1,±2} ) to determine the possibilities
for m′α and m′2α .



Rank 1 Lie triple systems in the complex quadric
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in a special, “skew” position



The “skew” 2-sphere in Q3

I We want to embed the 2-sphere M = SO(3)/SO(2) in
Q3 = SO(5)/SO(2)× SO(3) as a totally geodesic
submanifold (symmetric subspace).

I V := End0
+(R3) : symmetric, trace-free real (3× 3)-matrices.

The Cartan representation is the 5-dimensional irreducible,
orthogonal, real representation

SO(3)× V → V , (B,X ) 7→ BXBt = BXB−1 .

It acts on the complex quadric Q3 ∼= G+
2 (V ) via isometries.

I Let Z0 := R
(

0 1 0
1 0 0
0 0 0

)
⊕ R

(
0 0 1
0 0 0
1 0 0

)
∈ G+

2 (V ) .

I It turns out that the orbit M of the action of SO(3) on
G+

2 (V ) through Z0 is totally geodesic, and isometric to
S2 . It is neither a complex nor a totally real submanifold of
Q(V , β) , and is therefore the totally geodesic 2-sphere
that we seek.


