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1. Regularized mean curvature flow



Regularized mean curvature flow

Proper Fredholm submanifold

V' : (separable) Hibert space
M : Hilbert manifold

f+: M —V :immersion

Definition(C.L. Terng, 1989)

f: M — YV : proper Fredholm
e codim M < oo
ﬁ e expt |BLr(ar) :proper map (Vr > 0)
° expi-v : Fredholm operator (Vv € T+ M)




Regularized mean curvature flow

Properties of proper Fredholm submanifolds

f:M —V : proper Fredholm
A, : the shape operator of f for v(€ T+ M)

A, : compact operator




Regularized mean curvature flow

The good focal structure of a proper Fredholm submnaiofold

M : proper Fredholm submanifold-case

Yv

7
e

The set of all focal points of M along ~,
has no accumulating point and the multiplicity

of each focal point is finite.



Regularized mean curvature flow

The focal structure of a general Hilbert submanifold

M : (general) Hilbert submanifold-case

_ accumulating point
7

The set of all focal points of M along ~,
is possible to have accumulating points and

the multiplicity of each focal point is possible to be infinite.



Regularized mean curvature flow

Regularizable submanifolds

f:M —V : proper Fredholm

Definition(Heintze-Liu-Olmos, 2006)

f: M <V : regularizable ﬁ
e

(Vv e T+ M,
ITr,A, (< 00), ITr(A2%) (< o)

Tr,A, := Z(Az r Ni)

=1
(Spec Ay = {1 S p2 < <0< - < A < Ar})
Tr(A2) := Z v;

=1

(Spec A2 = {v1 > v > -+ > 0})




Regularized mean curvature flow

Regularized mean curvature vector (codimension 1-case)

f: M — V : regularizable hypersurface

£ : a unit normal vector field of f

Definition

H?® := Tr,. A regularized mean curvature

H := Tr, A; - £ regularized mean curvature vector




Regularized mean curvature flow

A Regularized mean curvature vector (codimension> 2-case)

For a regularizable submanifold of codimension > 2,
its regularized mean curvature vector cannot be defined.

Tr.(Ag 4¢,) # Trr Ag, + Tr, Ag,

wy : TEM — R (& wy(€) := Tr,. A¢) is not linear.
Hence
AH, € Td_M s.it. (Hu, &) = wu(§) (VEE Td_M)



Regularized mean curvature flow

A Regularized mean curvature vector (codimension> 2-case)

Remark w, : linear (Vu € M) = H is defined.

¢ : H°([0,1],g) — G : the parallel transport map

(G : compact semi-simple Lie group)
M : compact submanifold in G
¢~ 1(M)(C H([0,1],g)) is a regularizable submanifold.
For ¢~ 1(M), w, is linear for any u € ¢p—1(M).
Hence its regularized mean curvature vector is defined.



Regularized mean curvature flow

Regularized mean curvature flow

{ft: M — V}ico,r) : C°°-family of regularizable
hypersurfaces

H,; : the regularized mean curvature vector of f;

Definition

{ft}te[o,T) :regularized mean curvature flow

oOF

ﬁ E = Ht(: (At)r.ft) (0 <t< T)
(F(z,t) := fe(x) ((z,t) € M %X [0,T)))




2. Collapsing theorem



Collapsing theorem

Setting

V' : (separable) Hilbert space
G : Hilbert Lie group
G ~ V : almost free isometric action satisfying

(MO) G-orbits are minimal reg. submanifolds
( “minimal” <= Tr, A¢ =0 (V¢ € T*M) )

¢:V — V/G : the orbit map

gn : the Riemannian orbi-metric of IV := V/g
s ¢ is a Riemannian orbi — submersion
of (‘/a< ’ >) onto (N7QN)



Collapsing theorem

Example

Example
G /K : symmetirc space of compact type

g := LieG

HO([0, a], g) (The space of all H’-connections of
P, :=[0,a] Xx G — [0,a])
H'([0,a],G) (The group of all H'-gauge
transformations of P,)
H'([0,a],G) ~ H°([0,a], 9)
= (g0 w)(t) = Ad(g(1)) (u(t) — (Ren))s " (9'(1))
(g € H'([0,a],G), u € H([0,a], 9))

(This action is almost free and isometric.)



Collapsing theorem

Example

P(G,TxK):={g¢€ Hl([Oaa]aG) | (g(0),g(a)) €T X K}
(T : a finite subgroup of G)

e P(G,T x K) ~ H°([0,a], g) is an almost free and
isometric action s.t. the condition (MO).
e H([0,a],5)/P(G,T x K) 2T\ G /K.




Collapsing theorem

Setting (continued)

G ~ V : almost free isometric action satisfying
(MO) G-orbits are minimal reg. submanifolds
f: M — V : regularizable hypersurface
f(M) : G-invariant

st M := f(M)/G : compact



Collapsing theorem

Setting (continued)

(*1) M C Bz (x0) and expg, |Bq%~ (0) @ injective
(r2) B(1— @) /(- Vol (M) <1

(0<a<1)
some point xg € N

wp, ¢ the volume of the Euclidean unit n-ball
(n:=dim N —1)

b:= VK (K :the max. sec. curv. of N := V/G)
Bz (xo) : the geodesic ball of radius 7 centered at

BT (0) : the ball of radius  centered at 0 € T,,, N
b




Collapsing theorem

About the injectivity in (%)

(M (D) an)

(1.1 : exp,, |BT (o) * injective

(M) : exp,, | BT (o) * NOt injective



Collapsing theorem

Setting (continued)

(*3) (H®)?hy > 2n%Lgy

(horizontally convexity condition)

g# : the horizontal comp. of the induced metric on M
hy : the horizontal comp. of the second fund. form of M
A?(ET(H* @ H* ®V)) o AZY := (VxY)y
€
(X,Y € T'(H))

L := su ma A% (Vx, A x.X4), X
ue‘g (X1,---,X5)X€(’H1)2 |< Xl(( X2 )Xa 4)7 5>|

(Gt)u={X eHal Xl =1} )




Collapsing theorem

Collapsing theorem

f(M) : G-invariant, f(M)/G = ¢(f(M)) : compact
F(M) satisfies (*1), (*2), (*3)

Theorem A(Collapsing theorem).
The reg. m.c.f. starting from f(M)

collapses to a G-orbit in finite time.

f(M)

|4
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3. Applications to the gauge theory



Applications to the gauge theory

The space of H°-connections of the principal bundle

w: P — B : G-bundle
B : compact Riemannian manifold
G : compact semi-simple Lie group
Ago : the (affine) Hilbert space of all H-connections of P

AR = T,AR = 0f'(P,g) = T’ (T*B ® Ad(P))
Y Y
W oe— A= w —wp)



Applications to the gauge theory

Holonomy map

c:[0,a] - B : C*-loop

P? : the parallel translation along c with respect to w

Definition

hol. : Ago -G = P?(u) = u-hol.(w) (Vu € Pyy))
e

Remark {hol.(w)|c € Q°(B)} is the holonomy group
of w at x.



Applications to the gauge theory

Construction of a map of AH® onto H°([0, a], g)

c:[0,a] = B : unit speed C*°-loop
We take a division 0 = to < t; < t2 < --- <ty = a of [0, a]
and a family {¢; : P|y, — U; x G}¥_, of local
trivializations of P satisfying the following condition:
o c([ti—1,t;])) CU; (i=1,---,k)
® C1--+C:[0,a] — Pisa C'-loop
& & @) =7 (c(t),e) (€ [t tl)

El"'Ek(ﬁ‘gl"'akl[tz_l,tl]:a& (i:l,..-’k)

Remark ci(t) = ai(c(t))

(0i : U; — P : the section giving the local trivialization ¢;)



Applications to the gauge theory

Construction of a map of AH® onto H°([0, a], g)

Ez(tz) - 53('[;2) """""""" N

ci(t) = cz(ta)----. ..
c1(0)

e(ta) 17r

5
o

Uz

0i: Ui = P <= 0i(2) := ¢; '(z,€) (z € V)
e



Applications to the gauge theory

Construction of a map of AH® onto H°([0, a], g)

P

63(133) = 54(t3)

cl ) Ck .
Cr—1(tk—1) = Cr(tp—1)

02 (tz) = C3 (tz)

B

Bews)

c(tl)" Uz T eta)



Applications to the gauge theory

Construction of a map of AH® onto H°([0, a], g)

c; = Cl[ti—lati]’ Pg = [ti—1, 6] X G (e =1,--- ,k)

te; i ;P — P = te;(t,u) :=u ((t,u) € c;P)
e

G5 GP G Pl = g (tu) = (1 pra(pi(u)

((t,u) € ciP)

Definition

ps = ARY — HO([ti1,ti), 9)
= pg (@)(®) = (e 0 (957" A) (1) (L (1))

(Ai=w—wo, ce(t):=(te) (t€[0,a]))




Applications to the gauge theory

Construction of a map of AH® onto H°([0, a], g)

Definition

coe 0
/—Lgll”...’:i:k : Ag — HO([Oa al, g) o
= pgr e @) = Hg (W) (w € AR

de
(G=1,--,k)




Applications to the gauge theory

Metrics of AH", H°([0,a],g) and G

T, AH’ = 17" (T*B @ Ad(P))

() )a: TeAR’ x T,AH® S R

o (A1, A2) A4 := /wEM<(A1)m,(A2)m>B’g dvp

(A1, Ay € T, AH%)

(, )B,g : the fibre metric of T*B ® Ad(P) induced from
the metric of B and the Killing form (, )5 of g



Applications to the gauge theory

Metrics of AH", H°([0,a],g) and G

(, )p:H([0,a],9) x H°([0,a],9) — R
= (u, v)p ::/0 (u,v)gdon

(u,v € H°([0, a], 9))

(, )g : the bi-invariant metric induced from ( , ),

(s )G,a =a(, )a



Applications to the gauge theory

Results for pct ¢

P1 Pk

Proposition 3.1.

(i) Ncl ck : (A{DIO?< y )A) = (HO([O’ al,g9),{, )p)
is a Rlemannian submersion with totally geodesic fibre.

(i) ¢ o i = hol,.

¢ : H°([0,a],g) — G parallel transport map
— ) = gula) (u € HO([0,a],9))
gu(0) = e >

(gu € H' ([0,a],G) s.t. { (Ry.(0)= (0!, (1) = u(®)



Applications to the gauge theory

P
Results for Mok

Nclv"' sCk
P13 Pk
AH° H°([0,d], g)

C é

hol.



Applications to the gauge theory

Results for hol,.

hol, : (AH®, (1, Ya4) = (G, (, YG,a) is
a Riemannian submersion with minimal

regularizable fibre.

L(C G) : equifocal <= hol '(L) : isoparametric

N

e The notion of an equifocal submanifold in symmetric spaces

was introduced by C.L. Terng and G. Thorbergsson in 1995.

e The notion of an isoparametric submanifold in a Hilbert space
was introduced by C.L. Terng in 1989.



Applications to the gauge theory

Holonomy concentration theorem

From Theorem A and Proposition 3.1, we obtain

Theorem D(Holonomy concentration theorem along r.m.c.f.)

c:[0,a] — B : unit speed C*°-loop

M : a strongly convex closed hypersurface in G
satisfying (*1) and (*2)

Then the following statement (i),(ii) and (iii) hold :

(i) B := hol (M) is a reg. hypersurface.

(ii) The reg. m.c.f. {B;};c(0,1) starting from B exists.

(iii) As t — T, hol.(B;) collapses to a one-point set.

As t — T, the holonomy elements of the connections
belonging to B; along c concentrate a point of G.



Applications to the gauge theory

Recall of the conditions (x;) and (x2)

(*1) M C Bz (x0) and expg, |Bq%~ (0) @ injective
(r2) B(1— @) /(- Vol (M) <1

(0<a<1)
some point xg € N

wp, ¢ the volume of the Euclidean unit n-ball
(n:=dim N —1)

b:= VK (K :the max. sec. curv. of N := V/G)
Bz (xo) : the geodesic ball of radius 7 centered at

BT (0) : the ball of radius  centered at 0 € T,,, N
b




4. Future plan



Flow approach to the singular point of the moduli space of self-dual connections

Flow approach to the singular point of
the moduli space of self-dual connections

w: P — B : SU(2)-bundle (dim B = 4)

o o
B C Agl Hl([()aa]»ﬁu(z))
Qo l é
hol.
SU(2) D M

small geodesic sphere
center at e

B := hol_ ' (M) :regularizable submanifold

3{Bi}iclo,r) : the regularized mean curvature flow s.t. By = B



Flow approach to the singular point of the moduli space of self-dual connections

Flow approach to the singular point of
the moduli space of self-dual connections

Bt M SDIPDIL Bt M yMII_DIl Bt

¢ . N
s C ymi C AY
| | |
(Bt A SDH )/ngJrl CMSDl C M)?M,l C Ml

= AHl/gHH'l MyMl — 3)./\4Hl/gHH'1
M.SDl — SDHl/ng+1



Flow approach to the singular point of the moduli space of self-dual connections

Flow approach to the singular point of
the moduli space of self-dual connections

Question.
Can we find a unit speed C°°-loop c such that

{(B:N SDEL )/g§l+1 Yeelo,1)

is @ mean curvature flow collapsing to a singular point
D,
of M3P1?



Flow approach to the singular point of the moduli space of self-dual connections

Flow approach to the singular point of
the moduli space of self-dual connections

SD,l
Mp

—a collar neighborhood

p— —_

\ TTamSP!
We want to find a unit speed C°°-loop c such that

\ {(B:nSDE)/GE " Letom)
“~._is like this?

~_ _-



Flow approach to the singular point of the moduli space of self-dual connections

Why does this question arise?

Singular points of the moduli space are the gauge
equivalence classes of reducible connections.

Bt = hOlc_l(Mt)
It is expected that, for a suitable loop c,
M, —{e} <= (BnSDE)/GE™ = [weea] 7
In the case where M; is the m.c.f. starting from a small

geodesic sphere centered at e, M; — {e} and hence
it is expected that, for a suitable loop c,

(B N SDHY /GH™ 5 [wredl-



Flow approach to the singular point of the moduli space of self-dual connections

Thank you for your attention!



Flow approach to the singular point of the moduli space of self-dual connections

Dear Professor Jiirgen Berndt!
Congratulations on 60-th birthday!
With gratitude!



Flow approach to the singular point of the moduli space of self-dual connections



Flow approach to the singular point of the moduli space of self-dual connections

On the images of the Gauge orbits

Ag’l g Agl
e, ‘ C ‘ e,
Hl([(),a],g) Hl([O,a],g)

qbl e ld)

G G

Ad(g(0))
L

8EGp , B:=AJ % (8) dffg 0Cyp-+-Ck



Flow approach to the singular point of the moduli space of self-dual connections

Equivariance of the bridging map with the gauge action

Al ¢ Al
peLiss l ©, l peLiss
H'([0,a],9) H'([0,a], 9)
g = A (2)
;11-'-.-?& . ggwl - QHHI(G)

(A (GH ™)) C QETH(G) )
1+1 1+1
o pee ((GF Nao - w) C QET(G) - peyrek (w)

1+1 141
o N;ll..f;k (gg cw) C QH (G) - “96011---(:£k(w)



Flow approach to the singular point of the moduli space of self-dual connections

On the images of the Gauge orbits

Hl([O,a],g) Hl([O,a],g)
¢l ® l«p
G G

Ad(g(0))

o H(QTT(G) - u) = {p(u)}
o H(QTT(G) - u) = Ad(G) - ¢(u)
Hence
o holc((GH ™)z - w) = {p(pe% ()}
o hol.(GH™ - w) C Ad(G) - (pei%% (w))



Flow approach to the singular point of the moduli space of self-dual connections

An important function on the moduli space

A —F HY([0,a], 9)
hol. O
v O )
l 1+1 'l l mC 1+1
(AH'/(GH'™),, =) MU e HU([0,a],5)/28 (@) = G
™M O TAd O
Hl Hl-‘rl — Hl hOIC G A_d G G
(AH' /gH™" =) ME /Ad(G) dc
f - @
R

[0, o0)



Flow approach to the singular point of the moduli space of self-dual connections

An important function on the moduli space

spH' C At ———"> HY([0,a],s9)
- O hol. O é
MEPEC MY Bole . Hi(0,a), 9)/28" (@) = &
™M e, S
TR

[0, o0)

]
MEP! C

(G=5U(2), g=su(2)



Flow approach to the singular point of the moduli space of self-dual connections

Important fact

() B./GE" = (fp)*(r) (3re > 0).
(i) (B:nSDE)/GE™ = (f£) " () nMEP! (37 > 0).

By using these facts, we will tackle the question.
Question.
Can we find a unit speed C°°-loop c such that

{(B.nSDE) /G

141 .
F }ecpo,r) is @ mean curvature flow?



Flow approach to the singular point of the moduli space of self-dual connections

Groisser-Parker’s result

B : compact oriented simply connected Riemannian
4-manifold whose intersection form is positive definite

w: P — B : a SU(2)-bundle of instanton number k > 1

Theorem(Groisser-Parker)

(i) MEPH (, ) (1 >2)is a (8k — 3)-dim. singular
Riemannian manifold with cone singularity.

(Cone points are the gauge equivalence classes of
reducible connectons.)




Flow approach to the singular point of the moduli space of self-dual connections

Groisser-Parker’s result

Theorem(Groisser-Parker) (continued)

(i) A sufficiently small neighborhood U of a cone point
p of (M3P*,(,)) is homeomorphic to the cone over
CP*—2 (| )|y is described as

(, )= dr? . Tz(pr*go + O(rz))a
where 7 is the distance function from p, gg is the metric
of CP**—2 of constant holomorphic sectional curvature,

pr is the projection of U onto r—1(¢) along grad r.




Flow approach to the singular point of the moduli space of self-dual connections

Groisser-Parker’s result

Theorem(Groisser-Parker)(continued?)
(iii) In the case of k = 1, the boundary of the completion
of (M$P, (, )) is homothetic to B and
its sufficiently small neighborhood consists of
the gauge equivalence classes of the connections
such that the energy density concentrates at a point.




Flow approach to the singular point of the moduli space of self-dual connections

Groisser-Parker’s result

—a collar neighborhood

== SD,l
3 Mp
- homothetic
(when k£ = 1)



