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Problem studied
jointly with X. Cheng, Z. Hu and L. Vrancken

Let
ψ : Mn −→ M̃n(4c̃)

be a minimal Lagrangian submanifold immersion into a complex space
form, where

Mn = Mn1
1 (c1)×Mn2

2 (c2)

and Mn1
1 (c1), Mn2

2 (c2)

X are manifolds of real dimensions n1, n2 respectively: n1 + n2 = n,

X have each constant sectional curvature c1 and c2, respectively.



Motivation

Theorem 1 (N. Ejiri1)

Let M be an n-dimensional, totally real, minimal submanifold of constant
sectional curvature c, immersed in an n-dimensional complex space form.
Then M is totally geodesic or flat (c = 0).

X there is a rich literature on minimal Lagrangian immersions of
complex space forms

X the present problem represents a generalization of the classical result
of N. Ejiri.

1N. Ejiri, Totally real minimal immersions of n-dimensional real space forms into
n-dimensional complex space forms, Proc. Amer. Math. Soc. 84 (1982) 243–246.



Background

I Kähler manifolds are defined as the almost Hermitian manifolds for
which the almost complex structure J is parallel with respect to the
Levi-Civita connection ∇.

I A complex n-dimensional complete and simply connected Kähler
manifold of constant holomorphic sectional curvature 4c̃ is called a
complex space form.

I Let M̃n(4c̃) denote a complex space form.Then, if

I c̃ > 0: M̃n(4c̃) ≡ CPn,
I c̃ = 0: M̃n(4c̃) ≡ Cn,
I c̃ < 0: M̃n(4c̃) ≡ CHn.



Background

Let M be a submanifold of a Kähler manifold and let X ∈ TpM.
Given the behaviour of J on tangent vectors, M can be:

I almost complex : JX tangent.
?The almost complex submanifolds must have even dimension.

I totally real : JX normal.
?If, additionally, the dimension of M is half the dimension of the
ambient space then M is called Lagrangian.

I CR : TM = D1 ⊕D2.



Main equations

X The formulas of Gauss and Weingarten write out as:

∇̃XY = ∇XY + h(X ,Y ), ∇̃X ξ = −AξX +∇⊥X ξ,

X Properties of J:

∇⊥X JY = J∇XY , AJXY = −Jh(X ,Y ) = AJYX .

X The equations of Gauss, Codazzi and Ricci are

R(X ,Y )Z = c̃(〈Y ,Z 〉X − 〈X ,Z 〉Y ) + [AJX ,AJY ]Z ,

(∇h)(X ,Y ,Z ) = (∇h)(Y ,X ,Z ),

R⊥(X ,Y )JZ = c̃(〈Y ,Z 〉JX − 〈X ,Z 〉JY ) + J[AJX ,AJY ]Z ,



A new equation – The Tsinghua Principle
due to Li Haizhong, Luc Vrancken and Wang Xianfeng (2013)

X need to have a tangential version of the Codazzi equation.
After appying the Tsinghua principle, we obtain in our case:

0 =R(W ,X )Jh(Y ,Z )− Jh(Y ,R(W ,X )Z )+

R(X ,Y )Jh(W ,Z )− Jh(W ,R(X ,Y )Z )+

R(Y ,W )Jh(X ,Z )− Jh(X ,R(Y ,W )Z ).

X need to have an explicit expression for the curvature tensor:

R(X ,Y )Z = c1(〈Y1,Z1〉X1−〈X1,Z1〉Y1)+c2(〈Y2,Z2〉X2−〈X2,Z2〉Y2),

where Xi ,Yi ,Zi are the projections of X ,Y ,Z on the i th component
of Mn, for i = 1, 2.



Theorem 2 (The main Theorem)

Let ψ : Mn −→ M̃n be a minimal Lagrangian submanifold into a complex
space form. If Mn = Mn1

1 ×Mn2
2 , where Mn1

1 and Mn2
2 have constant

sectional curvatures c1 and c2, then c1c2 = 0. Moreover

1. c1 = c2 = 0. Mn is equivalent to
I the totally geodesic immersion in Cn1+n2 ,
I the Lagrangian flat torus in CPn1+n2(4).

2. c1c2 = 0, c21 + c22 6= 0. We must have c̃ > 0, so we may assume that
the ambiant space is CPn1+n2(4). We have that the lift of the
immersion is congruent with

1

n + 1
(e iu1 , . . . , e iun1 , ae iun1+1y1, . . . , ae

iun1+1yn2+1),where

1. (y1, y2 . . . , yn2+1) is the standard sphere Sn2 ⊂ Rn2+1 ⊂ Cn2+1,

2. a =
√
n − n1 + 1,

3. un1+1 = − 1
a2 (u1 + . . .+ un1).



Case c1 = 0 and c2 6= 0

Lemma 1

Let {Xi} and {Yj}, i = 1, . . . n1, j = 1, . . . n2 be orthonormal bases of
Mn1

1 and Mn2
2 , respectively. Then we have

AJXiYl = µ(Xi )Yl .

I It is straightforward to see that

〈AJXiYk ,Xj〉 = 0 and 〈AJXiYj ,Yk〉 =

{
0, if j 6= k,

µ(Xi ), if j = k.



Lemma 2 (Main Lemma)

There exist orthonormal frames of vector fields {Xi}, {Yj}, i = 1, . . . , n1,
j = 1, . . . , n2 on Mn1

1 and Mn2
2 respectively, such that:

AJX1X1 = λ11X1,

AJXiXi = µ1X1 + . . .+ µi−1Xi−1 + λiiXi , 1 < i ≤ n1,

AJXiXj = µiXj , 1 ≤ i < j ,

AJXiYj = µiYj , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

(1)

AJYiYj = δij(µ1X1 + . . .+ µn1Xn1), (2)

where λii , µi are constant and satisfy

λ11 + (n − 1)µ1 = 0,

λ22 + (n − 2)µ2 = 0,

. . .

λn1 n1 + (n − n1)µn1 = 0.

(3)



Determine explicitly the Lagrangian immersion

Theorem 3 (H. Li, X.Wang )

Let ψ : M −→ CPn(4) be a Lagrangian immersion. Then ψ is locally a
Calabi product Lagrangian immersion of an (n − 1)-dimensional
Lagrangian immersion ψ1 : M1 −→ CPn−1(4) and a point iff ∃
λ1, λ2 ∈ R, ∃ D1 = span{E1} and D2 = span{E2, . . . ,En} such that

λ1 6= 2λ2 and

{
h(E1,E1) = λ1JE1,

h(E1,Ei ) = λ2JEi , i = 2, . . . , n,

Moreover, ψ : M −→ CPn(4) satisfies:

I ψ is minimal iff ψ1 is minimal. Locally M = I ×M1 and ψ = Π ◦ ψ̃

ψ̃(t, p) =
(√ n

n + 1
e i

1
n+1

t ψ̃1(p),

√
1

n + 1
e−i n

n+1
t
)
, (t, p) ∈ I ×M1,

where Π is the Hopf fibration and ψ̃1 : M1 −→ S2n−1(1) is the horizontal
lift of ψ1.



Theorem 4 (H. Li, X.Wang )

Let ψ : M → CPn(4) be a Lagrangian immersion.
Suppose that:
∃ λ1, λ2 local functions,
∃ D1 = span{E1} and D2 = span{E2 . . . ,En} orthogonal distributions s.t.

λ1 6= 2λ2 and

{
h(E1,E1) = λ1JE1,

h(E1,Ei ) = λ2JEi , i = 2, . . . , n,

Then M has parallel second fundamental form if and only if ψ is locally a
Calabi product Lagrangian immersion of a point and an (n − 1)-dimensional
Lagrangian immersion ψ1 : M1 −→ CPn−1(4) which has parallel second
fundamental form.

esc



Apply Theorem 3 on Mn

I On Mn = M1 ×M2, consider D1 spanned by X1 and D2 spanned by
{X2, . . . ,Xn1 ,Y1, . . . ,Yn2}.

I given the form of AJE1 we may apply Theorem 2 (H. Li, X. Wang)
=⇒ Mn is locally a Calabi product Lagrangian immersion of
ψ1 : M11 −→ CPn−1(4) and a point, i.e. Mn = I1 ×M11.

I As ψ is minimal in our case, we get further that ψ = Π ◦ ψ̃ for

ψ̃(t, p) =
(√ n

n + 1
e i

1
n+1 t ψ̃1(p),

√
1

n + 1
e−i

n
n+1 t
)
, (t, p) ∈ I1 ×M1,

where Π : S2n−1(1) −→ CPn−1(4) is the Hopf fibration and
ψ̃1 : M1 −→ S2n−1(1) is the horizontal lift of ψ1.



Apply Theorem 3 on M11, where Mn = I ×M11

I Consider next the immersion ψ1 : M11 −→ CPn−1(4).
I the restriction A1

J of the shape operator AJ on
{X2, . . . ,Xn1 ,Y1, . . . ,Yn2} (which spans TpM11) is defined as

A1
JX2

X2 = λ22X2,

A1
JXi

Xi = µ2X2 + . . .+ µi−1Xi−1 + λiiXi , 2 < i ≤ n1,

A1
JXi

Xj = µiXj , 2 ≤ i < j ,

A1
JXi

Yj = µiYj , 2 ≤ i ≤ n1, 1 ≤ j ≤ n2,

A1
JYi

Yj = δij(µ2X2 + . . .+ µn1Xn1),

(4)

I We may then apply Theorem 3 (H. Li, X. Wang) on M11:
D1  span{X2}, D2  span{X3, . . . ,Xn1 ,Y1, . . . ,Yn2}.
=⇒ M11 is locally a Calabi product Lagrangian immersion of
ψ2 : M12 −→ CPn−2(4) and a point: M11 = I2 ×M12, I2 ∈ R. Thus:

Mn = I1 × I2 ×M12



I As ψ2 is minimal, we further apply Theorem 3 and we get for
ψ1 = Π1 ◦ ψ̃1 that

ψ̃1(t, p) =
(√n − 1

n
e i

1
n t ψ̃2(p),

√
1

n
e−i

n−1
n t
)
,

where (t, p) ∈ I2 ×M1,
Π1 : S2n−3(1) −→ CPn−2(4) is the Hopf fibration
ψ̃2 : M12 −→ S2n−3(1) is the horizontal lift of ψ2.

I Apply succesively Theorem 3 for n1 times:
Mn is locally a Calabi product Lagrangian immersion of n1 points
and an n2-dimensional Lagrangian immersion

ψn1 : Mn2
2 −→ CPn−n1(4),

where Mn2
2 is totally geodesic.



Mn = I1 × I2 × . . .× In1 ×Mn2
2 ,

for I1, . . . , In1 ∈ R. Finally, for q ∈ Mn2
2 and t := (t1, . . . , tn1) the

parametrization of Mn is:

ψ(t, q) =
(√n − (n1 − 1)√

n + 1
e iun1+1y1,

√
n − (n1 − 1)√

n + 1
e iun1+1y2, . . . ,√

n − (n1 − 1)√
n + 1

e iun1+1yn2+1,
1√
n + 1

e iu1 , . . . ,
1√
n + 1

e iun1
)
,

where −(n − n1 + 1)un1+1 = u1 + u2 + . . .+ un1 and

u1 =− n

n + 1
t1,

. . . ,

un1 =
t1

n + 1
+

t2
n

+ . . .+
tn1−1

n − (n1 − 2) + 1
− n − (n1 − 1)

n − (n1 − 1) + 1
tn1 ,

un1+1 =
t1

n + 1
+

t2
n

+ . . .+
tn1−1

n − (n1 − 2) + 1
+

tn1
n − (n1 − 1) + 1

.



Recall

Theorem

Let ψ : Mn −→ M̃n be a minimal Lagrangian submanifold into a complex
space form. If Mn = Mn1

1 ×Mn2
2 , where Mn1

1 and Mn2
2 have constant

sectional curvatures c1 and c2, then c1c2 = 0. Moreover

1. c1 = c2 = 0. Mn is equivalent to
I the totally geodesic immersion in Cn1+n2 ,
I the Lagrangian flat torus in CPn1+n2(4).

2. c1c2 = 0, c21 + c22 6= 0. We must have c̃ > 0, so we may assume that
the ambiant space is CPn1+n2(4). We have that the lift of the
immersion is congruent with

1

n + 1
(e iu1 , . . . , e iun1 , ae iun1+1y1, . . . , ae

iun1+1yn2+1),

I (y1, y2 . . . , yn2+1) describes the standard sphere Sn2 ⊂ Rn2+1 ⊂ Cn2+1,

I a =
√
n − n1 + 1, un1+1 = − 1

a2
(u1 + . . .+ un1).



Thank you!


	

