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Let

¢ M — M"(48)
be a minimal Lagrangian submanifold immersion into a complex space
form, where
M" = My (c1) x My*(c2)
and M (c1), My?*(co)
v are manifolds of real dimensions ny, ny respectively: n; + n, = n,

v have each constant sectional curvature ¢; and ¢, respectively.



Motivation

Theorem 1 (N. Ejiril)

Let M be an n-dimensional, totally real, minimal submanifold of constant
sectional curvature ¢, immersed in an n-dimensional complex space form.
Then M is totally geodesic or flat (¢ = 0).

v’ there is a rich literature on minimal Lagrangian immersions of
complex space forms

v’ the present problem represents a generalization of the classical result
of N. Ejiri.

IN. Ejiri, Totally real minimal immersions of n-dimensional real space forms into
n-dimensional complex space forms, Proc. Amer. Math. Soc. 84 (1982) 243-246.



Background

» Kahler manifolds are defined as the almost Hermitian manifolds for
which the almost complex structure J is parallel with respect to the
Levi-Civita connection V.

» A complex n-dimensional complete and simply connected Kahler
manifold of constant holomorphic sectional curvature 4¢ is called a
complex space form.

> Let M"(4&) denote a complex space form.Then, if

> &>0: M"(4¢) = CP”,
> &=0: M"(48) =C",
> &< 0: M"(4&) = CH".



Background

Let M be a submanifold of a Kahler manifold and let X € T,M.
Given the behaviour of J on tangent vectors, M can be:

» almost complex : JX tangent.
*The almost complex submanifolds must have even dimension.

» totally real : JX normal.
«If, additionally, the dimension of M is half the dimension of the
ambient space then M is called Lagrangian.

> CR: TMZD]_@Dz



v" The formulas of Gauss and Weingarten write out as:

VxY = VxY +h(X,Y), Vx&=—AX+Vx¢,
v’ Properties of J:

VxJY = JVxY, AxY =—Jh(X,Y)=AX.
v' The equations of Gauss, Codazzi and Ricci are

R(X,Y)Z =&E((Y,Z)X —(X,2)Y) + [Ax, Aw]Z,
(Vh)(X,Y,Z) = (Vh)(Y,X,Z),
RY(X,Y)JZ = &Y, Z)IX — (X, Z)JY) + J[Asx, Aw]Z,



v’ need to have a tangential version of the Codazzi equation.
After appying the Tsinghua principle, we obtain in our case:

v need to have an explicit expression for the curvature tensor:
R(X,Y)Z = a((Y1, Z1)Xi— (X1, Zi) Y1)+ (Y2, 22) Xo— (X2, 22) Y2),

where X;, Y;, Z; are the projections of X, Y, Z on the it component
of M", for i =1,2.



Theorem 2 (The main Theorem)

Let 1) : M" —s M" be a minimal Lagrangian submanifold into a complex
space form. If M" = M{"* x Mj?, where M{* and MJ? have constant
sectional curvatures ¢; and ¢y, then cico = 0. Moreover
1. ¢t = ¢ = 0. M" is equivalent to
» the totally geodesic immersion in C™""™,
» the Lagrangian flat torus in CP™"2(4).
2. ccy =0, 2 + 2 #0. We must have & > 0, so we may assume that
the ambiant space is CP™*™(4). We have that the lift of the
immersion is congruent with

1

iu iu, iu, iu,
n+1(e L, et aetmtlyy oo ae iy, 1), where

1. (y1,¥2---,Yn+1) is the standard sphere S™ C R™*! C Cr+1,
2. a=+n—n +1,

3. Uns1 = —2(ur + ..+ upy).



Casecg=0and ¢, # 0

Lemma 1

Let {X;} and {Y;}, i=1,...m, j=1,...n2 be orthonormal bases of
M and M2, respectively. Then we have

Aux. Y = u(Xi)Yi.

» It is straightforward to see that

0, if j # k,

Aix. Y. X:) =0 and (A)x.Y:. Ys) =
(Asx Yi: Xj) and (Ax Y, Yk) {N(Xi), = k.



Lemma 2 (Main Lemma)

There exist orthonormal frames of vector fields {X;}, {Y;}, i=1,...,n,
Jj=1,...,nm on M* and M;? respectively, such that:

A X1 = A X,

Ap Xi = Xy + .o pica Xion + NilX, 1 <0 <o (1)
AJX;)<j ::U’I')<j71 < i <.j7
A Yi=piYp1<i<n,1<j<m

AJY[ \/J = 6’./(:“’1X1 +...F Mn1Xn1)7 (2)
where \j;, pi; are constant and satisfy
A+ (n=1)p =0,
A2+ (n—2)up =0, 3)

>\n1 m + (n - nl)ﬂ’nl =0.



Determine explicitly the Lagrangian immersion

Theorem 3 (H. Li, X.Wang )

Let ¢ : M — CP"(4) be a Lagrangian immersion. Then v is locally a
Calabi product Lagrangian immersion of an (n — 1)-dimensional

Lagrangian immersion ¢y : My — CP"~Y(4) and a point iff 3
A1, A2 € R, 3Dy = span{E;} and Dy = span{E,, ..., E,} such that
h(E1, E1) = \MJE;,

A #2); and
1722 an {h(El,E;):MJE,-,i:2,...,n,

Moreover, 1) : M — CP"(4) satisfies:
» 4 is minimal iff 11 is minimal. Locally M =1 x My and ¢y =Tlo 1]}

- no i1y~ 1 _in
3e) = (/B e ), (k) € 1 x

where Tl is the Hopf fibration and ¢y : My —s §%"~Y(1) is the horizontal
lift of 1.




Theorem 4 (H. Li, X.Wang )

Let ) : M — CP"(4) be a Lagrangian immersion.

Suppose that:

3 A1, \> local functions,

3Dy = span{E1} and Dy = span{E, ..., E,} orthogonal distributions s.t.

h(Er, E1) = M JE,

A 2X\2 and
17 2% {h(El,E,-)z,\zJE,-,i:2,...,n,

Then M has parallel second fundamental form if and only if 1) is locally a
Calabi product Lagrangian immersion of a point and an (n — 1)-dimensional
Lagrangian immersion 11 : My — CP"~*(4) which has parallel second
fundamental form.

» esc



Apply Theorem 3 on M"

» On M" = M; x M,, consider D; spanned by Xj; and D, spanned by
{Xay - s Xy Y1, ooy Yo b

» given the form of A g we may apply Theorem 2 (H. Li, X. Wang)
= M" is locally a Calabi product Lagrangian immersion of
Py My — (CIP’"_I(4) and a point, i.e. M" = I x M.

» As ¢ is minimal in our case, we get further that ¢» = Mo ¢ for

7 _ n_ it 1 —it
B(e.p) = (/g @™ p) | g e ). (tp) € hox My,

where I : §2"=1(1) — CP"~'(4) is the Hopf fibration and
1 0 My — S?7~1(1) is the horizontal lift of ;.




Apply Theorem 3 on M;1, where M" = | x My;

» Consider next the immersion 1 : My — (C]P’"_l(4).
» the restriction Ab of the shape operator A, on
{Xa,..., Xn,, Y1, .., Yn,} (which spans T,M1) is defined as

A§X2X2 = A Xo,

Al Xi = poXo + ... 4 pic1Xi—1 + XiX;, 2 < i < ny,
Al X; = 1iX;,2 < i < j, (4)
Al Yy =i, 2<i<n,1<j<m,

Ay Y = (12X + .+ iy X))

» \We may then apply Theorem 3 (H. Li, X. Wang) on M;:
Dy ~ span{Xa}, Dy~ span{Xsz,..., Xn,,Y1,.- ., Yo, }.
= My is locally a Calabi product Lagrangian immersion of
ty 1 My — CP""2(4) and a point: Mi; = b x My, b € R. Thus:

Mn:/1></2><M12



> As 1 is minimal, we further apply Theorem 3 and we get for
1/)1 = I_|1 O’l/}l that

~ —1 fly o~ 1 sn—1
ditp) = (/= e'nfwz(p),\f;e—' ),

where (t,p) € b x My,
My : S?=3(1) —s CP"2(4) is the Hopf fibration
o My — S?773(1) is the horizontal lift of 1.
» Apply succesively Theorem 3 for n; times:
M?" is locally a Calabi product Lagrangian immersion of n; points
and an ny-dimensional Lagrangian immersion

Y, - M3? — CP"™(4),

where M,? is totally geodesic.



M" =1 x b x...x I x M},

for h,..., I, €R. Flnally, for g € MJ? and t:= (t1,...,t,) the
parametrization of M" is

vn—(m-1) 4, vn—(m-—-1) ;
t, :(7(3'"14-1 ’76'%14—1 et
vn—(m—1) 1u,,1+1yn " R 1 eiunl)
\/m 2 7\/7 k) 7\/m bl
where —(n— n + 1)up,41 = th + tp + ... + up, and
u = — n [5
1= n+1 1,
)
- t b tn—1 _ n—(m—1) ¢
"Tp+1l n T o p=-(m=-2)+1 n—-(m-1)+1"
_ h t tn—1 th
Imt =0 P n—(n1—2)+1+n—(n1—1)—|—1'



Recall

Theorem

Let 1) : M" —s M" be a minimal Lagrangian submanifold into a complex
space form. If M" = M[™ x M,?, where M{"* and Mj? have constant
sectional curvatures ¢, and ¢y, then cico = 0. Moreover
1. ¢t = ¢ =0. M" is equivalent to
» the totally geodesic immersion in C™*"2,
» the Lagrangian flat torus in CP™"2(4).

2. c1co =0, C12 + C22 # 0. We must have ¢ > 0, so we may assume that
the ambiant space is CP™ "™ (4). We have that the lift of the
immersion is congruent with

1

iu iup iup iun
m(e L, et getmtlyy oL aetmtty, ),

» (y1,¥2...,Ym+1) describes the standard sphere S™ C R c cmtl,
| 4

a=+vn—nm+1, Upy41 = —a%(ul + ot Uny).






	

