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Geometry vs. Topology via Symmetry

In this talk we want to understand different aspects of the interplay of

Geometry (mainly in the form of lower curvature bounds and
Alexandrov geometry)

Group Actions (via cohomogeneity one and transitive actions)

Topology (as equivariant cohomology and rational ellipticity)
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Equivariant cohomology
of Cohomogeneity One
Alexandrov Spaces



Alexandrov spaces

Toponogov’s sectional curvature characterisation via fat and thin triangles
can be adapted to impose a lower curvature bound on metric spaces.

Recall that an Alexandrov space (with lower curvature bound κ) is a
geodesic length space which is basically defined by the fact that its
geodesic triangles are “fatter” than the ones in the “model space” M(κ):
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Alexandrov spaces

Alexandrov spaces arise as

Gromov–Hausdorff limits of manifolds with lower sectional curvature
bound, or as

quotients of manifolds by group actions.

The category is closed under taking products, and the category of
Alexandrov spaces with curvature bounded below by 1 is closed under
joins.
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Cohomogeneity one Alexandrov spaces

The (isometric) action of a compact Lie group on an Alexandrov space X
is

transitive if it only has one orbit. In this case X is a homogeneous
manifold.

of cohomogeneity 1 if it has an orbit of codimension 1.
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Cohomogeneity one Alexandrov spaces

In analogy to cohomogeneity one manifolds there is a “double mapping
cylinder decomposition” of cohomogeneity one Alexandrov spaces M
(with orbit space a compact interval, i.e. not being a manifold).

Let G act by cohomogeneity one. The orbit space is a closed interval,
over its interior we find the principal orbits G/H of codimension 1,
over the endpoints the singular/exotic orbits G/K0 and G/K1.

Due to the slice theorem the normal cones (corresponding to normal
disc bundles in the manifold setting) over G/K0 and G/K1 have
common boundary G/H.

We glue them along this boundary to obtain M . We obtain bundles

Ki/H ↪→ G/H → G/Ki

In the manifold case Ki/H is a unit sphere, in the Alexandrov case
it is a positively curved homogeneous space. These are classified, but
provide a much richer setting than just spheres in the manifold case!
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Cohomogeneity one Alexandrov spaces

G = S1, K0 = K1 = S1, H = {e}

principal orbit: G/H = S1,
singular orbit: G/Ki = {e},
normal fibre: Ki/H = S1
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Equivariant Formality

Let us bring in topology to this setting. Recall the definition of
equivariant cohomology for GyM as the cohomology

H∗
G(M) := H∗(MG)

of the Borel construction MG = M ×G EG

with Borel fibration

M ↪→MG → BG = EG/G

Definition

The action GyM is called equivariantly formal if there is a module
isomorphism H∗(MG) ∼= H∗(M)⊗H∗(BG).

Remark

This is a highly prominent condition allowing for many different examples
like torus actions on simply-connected Kähler manifolds or Hamiltonian
torus actions.
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Cohen–Macaulay actions

Let us generalise this:

An action Gy X (then applied to the
G-cohomogeneity one-Alexandrov space X) is called Cohen–Macaulay if

dimH∗(BG)H
∗
G(X) = depthH∗

G(X)

That is, the Krull dimension of H∗(BG)/Ann(H∗
G(X)) equals the

length of a maximal regular sequence of H∗
G(X).

“Forgetting the free part, we act with fixed-points.”
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Cohen–Macaulay actions

Remark

It is easy to see that an equivariantly formal action is
Cohen–Macaulay.

The G-action on a cohomogeneity one manifold is known to be
Cohen–Macaulay.

Together with Leopold Zoller we recently suggested two further
variants of equivariant formality: MOD-formality and actions of
formal core (and prove the toral rank conjecture and a version of the
maximal symmetry rank conjecture in non-negative curvature for
them).
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Cohen–Macaulay cohomogeneity one Alexandrov spaces

Inclusions are denoted by ιi : H → Ki.

Theorem (A., Zarei)

Let X be a closed simply-connected Alexandrov space and G be a
compact connected Lie group which acts on X by cohomogeneity one
with a group diagram (G,H,K0,K1), where the classifying spaces of the
isotropy groups H, K0, and K1 are Sullivan spaces. Then H∗

G(X;Q) is a
Cohen–Macaulay H∗(BG;Q)-module if and only if one of the following
statements holds.

1 rkH = rkK0 = rkK1.

2 rkH < max{rkK0, rkK1} and

imH∗(Bι0) + imH∗(Bι1) = H∗(BH;Q)
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Cohen–Macaulay cohomogeneity one Alexandrov spaces

Remark

The theorem comprises the orbifold case!

We extended the known rational homotopy theory of homogeneous
spaces in order to incorporate non-connected stabiliser groups
(leading to the condition of “Sullivan spaces”).

We prove that if X is a cohomogeneity one Alexandrov space of
curv ≥ 1, then X is Cohen–Macaulay if and only if it is equivariantly
formal provided that χ(X) 6= 0 in the case when dimX is odd.

Using the join construction we can provide several examples of
non-Cohen–Macaulay Alexandrov spaces.
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Cohen–Macaulay cohomogeneity one Alexandrov spaces
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Rational Ellipticity
of Cohomogeneity One
Alexandrov Spaces



Rational ellipticity

Definition

A nilpotent space X is rationally elliptic if dimπ∗(X)⊗Q <∞.

Theorem (Grove–Halperin)

Cohomogeneity one manifolds are rationally elliptic.

Remark

If K0/H = K1/H = S1, the cohomogeneity one manifold is known to
admit non-negative sectional curvature.
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Rational ellipticity

Bott–Grove–Halperin speculated:

Conjecture

Non-negatively curved manifolds are rationally elliptic.

Remark

Hence, this is true for cohomogeneity one manifolds.
It is obviously wrong for cohomogeneity one Alexandrov spaces, since, for
example,

H∗(ΣCP2) = Λ〈x, y〉/xy=0

(deg x = 3,deg x = 5) and the Euler characteristic of the suspension
ΣCP2 of CP2 is negative.
This is an Alexandrov space of positive curvature!
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Rational ellipticity

Theorem (A., Galaz-Garćıa, Zarei)

Let (G,K0,K1, H) be a group diagram of connected Lie groups of the
cohomogeneity one Alexandrov space X. Then X is nilpotent, and it is
rationally elliptic if and only if, without restriction, either

X is a smooth manifold, or

K0/H rationally is an odd-dimensional sphere (and actually a sphere
out of dimension 7).
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Equivariant formality of
Z2 ⊕ Z2-symmetric spaces



Equivariant formality of the isotropy action

Let us finally provide a result for equivariant formality on certain
homogeneous manifolds.

Conjecture

Let G be a compact connected Lie group and let σ be an abelian Lie
group of automorphisms of G. Then the isotropy action on G/Gσ0 , where
Gσ0 denotes the identity component of the fixed point set of σ, is
equivariantly formal.

We extend our result to the following which was independently
discovered and proved by totally different techniques by Noshari.

Theorem (A.–Kollross, Noshari)

The conjecture holds whenever |σ| ≤ 7.

In particular, in this situation equivariant formality of the isotropy action
implies formality of G/Gσ0 .
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Conclusion

Remark

Despite all three setting/results/proofs being rather different, we can
provide one common underlying tool which, in the field of equivariant
cohomology, provides an effective new approach to the area:

In each case the construction of a (respective/distinct) rational model
allows for concrete computations and sometimes endows you with a. . .

“better grasp on buried maths”
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Thank you very much


