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1 — Outline

@ How we started research on Q"




1 — How we started research on Q"

The homogeneous nearly Kihler (S x S3, g)




1 — How we started research on Q"

The homogeneous nearly Kihler (S3 x S3, g) has

@ an almost complex structure J

@ and an almost product struture P,

@ which anti-commute,

@ and the curvature tensor is given by
5)

RX,Y)Z = 2(9(Y,2)X — g(X,2)Y)
112 (9(X, JZ)JY — g(Y, JZ) X +29(X, JY)JZ)
1

+- (9(PY,Z)PX — g(PX,Z)PY
+9(JPY,Z)JPX — g(JPX,Z)JPY).

o e
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© The complex quadric Q"




2 — The complex quadric Q"

Qn = {[(207 o -,zn—i—l)] € Cpn+1(4) ’ 2’3 +...+ ZT2H-1 = 0}




2 — The complex quadric Q"

Definition
Q" = {[(20,-- -, 2zns1)] € CP™1(4) | 28+ ...+ 22, = 0}.

Q" is a holomorphic submanifold of CP"*!(4) and hence, equipped with
the induced metric and almost complex structure, a Kihler manifold.




2 — The complex quadric Q"

Definition
Q" = {[(20,-- -, 2zns1)] € CP™1(4) | 28+ ...+ 22, = 0}.

Q" is a holomorphic submanifold of CP"*!(4) and hence, equipped with
the induced metric and almost complex structure, a Kihler manifold.

What is the inverse image of Q" under the Hopf fibration

g S2n+3(1) C Cn+2 N CPn+1(4) ?
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2 — The complex quadric Q"

Definition
Q" == {[(20, -, 2n41)] € CP""(4) | 23+ ...+ 22, =0},

Q" is a holomorphic submanifold of CP"*!(4) and hence, equipped with
the induced metric and almost complex structure, a Kihler manifold.

What is the inverse image of Q" under the Hopf fibration

g 52n+5(1) C Cn+2 N CPTL+1(4) ?

Lemma
alQr= {u + v

where (-, ) is the Euclidean metric on R"*2.

u, v ER™, (u,u)=(v, v)=>, <u,v>=o}gs2n+3<1>,

N | —




2 — The complex quadric Q"

Remark. Alternative descriptions:

@ Q" is the Grassmannian of oriented 2-planes in R"*2

o Q" = SO(n + 2)

~ 50(n) x SO(2)




2 — The complex quadric Q"

Remark. Alternative descriptions:

@ Q" is the Grassmannian of oriented 2-planes in R"*2

n_ SO(n+2)
® Q"= 50m) xS0

Lemma

T[JZ_]QH = span {(dr)(Z), (dr).(i2)}.
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2 — The complex quadric Q"

Remark. Alternative descriptions:

@ Q" is the Grassmannian of oriented 2-planes in R"*2

n_ SO(n+2)
® Q"= 50m) xS0

Lemma

T[JZ_]QH = span {(dr)(Z), (dr).(i2)}.

Re(zf+...+22,1)=0 =z 1lz = Zistangent to S*"*3(1)

Im(zf +...+22,,)=0 =2 Lliz = Zis horizontal

o e



2 — The complex quadric Q"

Lemma

Any shape operator A of Q" in CP"*1(4), associated to a unit normal
vector field, has the following properties:

Q AZ=1id,

Q@ g(AX, AY) = g(X,Y),
Q@ AJ=-JA.




2 — The complex quadric Q"

Lemma

Any shape operator A of Q" in CP"*1(4), associated to a unit normal
vector field, has the following properties:

Q A% =id,
@ g(AX, AY) = g(X,Y), A is an almost product structure
Q AJ=-JA.

that anti-commutes with J!




2 — The complex quadric Q"

Lemma

Any shape operator A of Q" in CP"*1(4), associated to a unit normal
vector field, has the following properties:
Q AZ=id,

Q@ J(AX,AY) = ¢(X,Y), Ais an ?/most produc? structure
that anti-commutes with J!
QO AJ=-JA.

Let A be the set of these operators. Choose Ay € A, then

A={cosp Ay +sinpJAy | p: Q" — R}.

==



2 — The complex quadric Q"

Lemma

Any shape operator A of Q" in CP"*1(4), associated to a unit normal
vector field, has the following properties:

Q A% =id,

@ g(AX,AY) = g(X,Y), A is an ?/most produc? structure
that anti-commutes with J!

Q AJ=-JA.

Let A be the set of these operators. Choose Ay € A, then

A={cospAg+singpJAy | p: Q" — R}

Lemma

For all A € A, there exists a non-zero one-form s such that
VxA=s(X)JA.

==



2 — The complex

quadric Q"

From the equation
RUX,Y)Z =

of Gauss:
9(Y, 2)X — g(X, Z)Y
+9(X,JZ)IY —g(Y,JZ)JX +29(X,JY )] Z
+9(AY, Z)AX — g(AX, Z)AY
+9(JAY, Z)JAX — g(JAX, Z)JAY




2 — The complex quadric Q"

From the equation of Gauss:
R(X,Y)Z = g(Y.2)X —g(X,2)Y
+9(X,JZ)IY —g(Y,JZ)JX +29(X,JY )] Z
+9(AY, Z)AX — g(AX, Z)AY
+9(JAY, Z)JAX — g(JAX, Z)JAY

Remark. Although none of the A € A are integrable, we have

Q=5 (3) x$*(3)-
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2 — The complex quadric Q"

From the equation of Gauss:
R(X,Y)Z = g(Y.2)X —g(X,2)Y
+9(X,JZ)IY —g(Y,JZ)JX +29(X,JY )] Z
+9(AY, Z)AX — g(AX, Z)AY
+9(JAY, Z)JAX — g(JAX, Z)JAY

Remark. Although none of the A € A are integrable, we have
Q2= 5% (1) x5 (4).

Theorem (Jensen)

A Riemannian homogeneous Einstein four-manifold is symmetric and
hence locally isometric to either a real space form R*, S*(c) or H(c); a
complex space form CP2(4c) or CH?(4c); or a product of surfaces

S%(c) x S%(c) or H%(c) x H*(c). W
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© The Gauss map of a hypersurface of a sphere
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3 — The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of R"*!

a: M"™ — R" hypersurface with unit normal b




3 — The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of R"*!

a: M"™ — R" hypersurface with unit normal b

Definition

The map G : M™ — S™(1) : p — b(p) is the Gauss map of a.




3 — The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of R"*!

a: M"™ — R" hypersurface with unit normal b

Definition
The map G : M™ — S™(1) : p — b(p) is the Gauss map of a.

Remark:

o Any parallel hypersurface to a, given by
ap s M™ — R™ M pis a(p) +tb(p)

for some t € R, has the same Gauss map.
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3 — The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of S""!(1)

a: M™ — S"TL(1) C R™"*2 hypersurface with unit normal b.




3 — The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of S""!(1)

a: M™ — S"TL(1) C R™"*2 hypersurface with unit normal b.

Definition

The map G : M™ — Q" : p — [a(p) + ib(p)] is the Gauss map of a.




3 — The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of S""!(1)

a: M™ — S"TL(1) C R™"*2 hypersurface with unit normal b.

Definition
The map G : M™ — Q" : p — [a(p) + ib(p)] is the Gauss map of a.

Remark:

° <a(p) a(p)>:<b(p) b(p)>_%’<a(p b(p)>:0:>a(p)+imeﬂlen

V27’ V2 V2 V2

o e



3 — The Gauss map of a hypersurface of a sphere

Gauss map of a hypersurface of S""!(1)

a: M™ — S"TL(1) C R™"*2 hypersurface with unit normal b.

Definition

The map G : M™ — Q" : p — [a(p) + ib(p)] is the Gauss map of a.

Remark:

o (U2 )y (¥p) Mp)y_1 (ap) bp)y_ - o) +z‘b%> e lQr

V2 V2 V2
@ A parallel hypersurface to a is now given by
ag: M™ — S"TH1) CR™2 : p s costa(p) + sint b(p)

for some ¢t € R. Since by =costb—sinta is a unit normal to ay,
ai+iby=e " (a+ib) and a; has the same Gauss map as a.

o e



3 — The Gauss map of a hypersurface of a sphere

Proposition

The Gauss map G : M™ — Q™ of a hypersurface a : M™ — S""(1) is a
Lagrangian immersion.




3 — The Gauss map of a hypersurface of a sphere

Proposition

The Gauss map G : M™ — Q™ of a hypersurface a : M™ — S""(1) is a
Lagrangian immersion.

Proof. Diagonalize the shape operator S of a: Se; = Aje;.

For the horizontal lift G : M™ — 771Q" : p — %(a(p) +ib(p)), one has

v
- 1 , 1 )
(dG)ej = ﬁ(ej —iSej) = \ﬁ(l —i\j)e;.
(dG)eq, ..., (dG)e, are linearly independent = G is an immersion.

Vi ke {1,...,n}: ((dQ)e;,i(dG)ex) =0 = G is Lagrangian.
U

o e



3 — The Gauss map of a hypersurface of a sphere

Proposition

If the principal curvatures of a hypersurface a : M™ — S™"1(1) are
constant, then its Gauss map G : M™ — Q" is a minimal Lagrangian
immersion.




3 — The Gauss map of a hypersurface of a sphere

Proposition

If the principal curvatures of a hypersurface a : M™ — S™"1(1) are
constant, then its Gauss map G : M™ — Q" is a minimal Lagrangian
immersion.

The statement follows from the following formula by Palmer:

1 n
H ) )=——4d]|1 | 1+
g(JH,-) . m ogjl_[l( +i\))

o e



3 — The Gauss map of a hypersurface of a sphere

An isoparametric hypersurface is a hypersurface with constant principal
curvatures.




3 — The Gauss map of a hypersurface of a sphere

Definition
An isoparametric hypersurface is a hypersurface with constant principal
curvatures.

Remark. Originally defined as level sets of isoparametric functions F' on
the ambient space: functions for which ||VF|| = ¢1(F), AF = ¢a(F).




3 — The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal
curvatures.

Remark. Originally defined as level sets of isoparametric functions F' on
the ambient space: functions for which ||VF|| = ¢1(F), AF = ¢a(F).

Full classification of isoparametric hypersurfaces of R"*1.
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3 — The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal
curvatures.

Remark. Originally defined as level sets of isoparametric functions F' on
the ambient space: functions for which ||VF|| = ¢1(F), AF = ¢a(F).

Full classification of isoparametric hypersurfaces of R"*1.

Theorem (Somigliana, Levi-Civita, Segre)

An isoparametric hypersurface of R"*! is an op part of a hyperplane R,
of a hypersphere S™(r) or of a product immersion S*(r) x R*F,

o e



3 — The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal
curvatures.

Remark. Originally defined as level sets of isoparametric functions F' on
the ambient space: functions for which ||VF|| = ¢1(F), AF = ¢a(F).

Examples of isoparametric hypersurfaces of S"t1(1).
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3 — The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal
curvatures.

Remark. Originally defined as level sets of isoparametric functions F' on
the ambient space: functions for which ||VF|| = ¢1(F), AF = ¢a(F).

Examples of isoparametric hypersurfaces of S"t1(1).

@ A hypersphere (0 <7 <1)
ar : S™(r) — S"TH1) :p e (p, V1 —12)

o e



3 — The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal
curvatures.

Remark. Originally defined as level sets of isoparametric functions F' on
the ambient space: functions for which ||VF|| = ¢1(F), AF = ¢a(F).
Examples of isoparametric hypersurfaces of S"t1(1).

@ A hypersphere (0 <7 <1)
ap: S™(r) = S"H (1) i p— (p, V1 —12)
@ A product of spheres (0 < 71,79 < 1 with 72 + 73 = 1)
ag : SF(r1) x S"7F(ry) — S™T(1) : (p1,p2) = (p1,p2)

o e



3 — The Gauss map of a hypersurface of a sphere

Definition

An isoparametric hypersurface is a hypersurface with constant principal
curvatures.

Remark. Originally defined as level sets of isoparametric functions F' on
the ambient space: functions for which ||VF|| = ¢1(F), AF = ¢a(F).

Examples of isoparametric hypersurfaces of S"t1(1).

@ A hypersphere (0 <7 <1)
ap: S™(r) = S"H (1) i p— (p, V1 —12)
@ A product of spheres (0 < 71,79 < 1 with 72 + 73 = 1)
az : S*(ry) x S"7F(ra) — S™H(1) « (p1,p2) = (p1,p2)
@ A tube around the Veronese surface in S*(1) (Cartan’s example)

ag : RP? x S'(e) — S%(1) W



3 — The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

/1—r2
@ a: /\1:...:)\71:%
@ a9 : Ali...:)\k:%,)\k+1:...:)\n:—%

@ a3 : A1, Ao, A3 mutually different




3 — The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

V1—r2
@ aj: /\1:...:)\71:%
@ a9 : Alii)\k:%, )\k+1:...:)\n:—g

@ a3 : A1, Ao, A3 mutually different

Theorem (Miinzner, 1981)

Let g be the number of distinct constant principal curvatures of an
isoparametric hypersurface of S"*1(1), then g € {1,2,3,4,6}.

o e



3 — The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

V1—r2
@ aj: /\1:...:)\71:%
@ a9 : A1:-~~:)\k:%;)\k+1:~~-:)\n:_n

@ a3 : A1, Ao, A3 mutually different

Theorem (Miinzner, 1981)

Let g be the number of distinct constant principal curvatures of an
isoparametric hypersurface of S"*1(1), then g € {1,2,3,4,6}.

The proof uses algebraic topology.
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3 — The Gauss map of a hypersurface of a sphere

Principal curvatures of these examples:

V1—r2
@ aj: /\1:...:)\71:%
@ a9 : Ali...:)\k:%,)\k+1:...:)\n:—%

@ a3 : A1, Ao, A3 mutually different

Theorem (Miinzner, 1981)

Let g be the number of distinct constant principal curvatures of an
isoparametric hypersurface of S"*1(1), then g € {1,2,3,4,6}.
The proof uses algebraic topology.

Until today, the classification of isoparametric hypersurfaces of S™*1(1)
is still not completely understood.

o e



4 — QOutline

@ Study of Lagrangian submanifolds of Q™
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4 — Study of Lagrangian submanifolds of )" — tools




4 — Study of Lagrangian submanifolds of )" — tools

Let f: M™ — Q™ be a Lagrangian immersion. Assume A € A is fixed.

If X is tangent to M", the decomposition

AX =BX - JCX

into a tangent and a normal part, defines two (1, 1)-tensor fields on M™.




4 — Study of Lagrangian submanifolds of )" — tools

Let f: M™ — Q™ be a Lagrangian immersion. Assume A € A is fixed.

If X is tangent to M", the decomposition
AX =BX —JCX

into a tangent and a normal part, defines two (1, 1)-tensor fields on M™.

Lemma
The (1,1)-tensor fields B and C on M" satisfy

Q B and C are symmetric,
Q@ B2+ (C?=id,

Q [B,C]=0.
Hence, for every p € M", there exists an ONB {e1, ... ey} of T,M"
and 01, ...,0, € R, determined up to an integer multiple of 7, such that

Aej = cos(29j)€j = Sin(29j)J€j. m



4 — Study of Lagrangian submanifolds of ()"

In the neighborhood of a point, 64,...,6, define local angle functions,
which we can change by changing A € A.




4 — Study of Lagrangian submanifolds of ()"

In the neighborhood of a point, 64,...,6, define local angle functions,
which we can change by changing A € A.

Lemma
Let f: M™ — Q™ be a Lagrangian immersion and Ay, A € A. Then

there exists a function ¢ : M™ — R such that A = cos Ay + sin p J Ay
along M™ and the local angle functions 6, ..., 0, associated to A are
related to the local angle functions 69, ... 609 associated to Ay by

n




4 — Study of Lagrangian submanifolds of ()"

In the neighborhood of a point, 64,...,6, define local angle functions,
which we can change by changing A € A.

Lemma

Let f: M™ — Q™ be a Lagrangian immersion and Ay, A € A. Then
there exists a function ¢ : M™ — R such that A = cos Ay + sin p J Ay

along M™ and the local angle functions 6, ..., 0, associated to A are
related to the local angle functions 69, ... 609 associated to Ay by
_ 0 ¥
0; =0; — =

Example. One can choose A € A such that

i4+...+6,=0 mod .

==



4 — Study of Lagrangian submanifolds of )" — tools

Equation of Gauss:

g(R(X,Y)Z,W) = g(Y,2)9(X, W) — g(X, Z)g(Y, W)
+ g(BY, Z)g(BX,W) — g(BX, Z)g(BY, W)
+9(CY, 2)g(CX, W) — g(CX, Z)g(CY, W)
+g(h(Y, Z), (X, W)) — g(h(X, Z), (Y, IV))




4 — Study of Lagrangian submanifolds of )" — tools

Equation of Gauss:

g(R(X,Y)Z,W) = g(Y,2)9(X, W) — g(X, Z)g(Y, W)
+ g(BY, Z)g(BX,W) — g(BX, Z)g(BY, W)
+9(CY, 2)g(CX, W) — g(CX, Z)g(CY, W)
+g(h(Y, Z), (X, W)) — g(h(X, Z), (Y, IV))

Equation of Codazzi:

(Vh)(X,Y, Z) — (VR)(Y, X, Z) = ¢(CY, Z)JBX — ¢(CX, Z)JBY
— g(BY, 2)JCX + g(BX, Z)JCY

o e



4 — Study of Lagrangian submanifolds of ()" — main results




4 — Study of Lagrangian submanifolds of ()" — main results

Question: Given a Lagrangian immersion f: M™ — Q", can we see it
as the Gauss map of a hypersurface a : M"™ — S"+1(1)?




4 — Study of Lagrangian submanifolds of ()" — main results

Question: Given a Lagrangian immersion f: M™ — Q", can we see it
as the Gauss map of a hypersurface a : M"™ — S"+1(1)?

Idea:

Take a horizontal lift f: M™ — 7=1Q™ and put

a:= \@Rcf,
b= \/§Imf
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4 — Study of Lagrangian submanifolds of ()" — main results

Question: Given a Lagrangian immersion f: M™ — Q", can we see it
as the Gauss map of a hypersurface a : M"™ — S"+1(1)?

Idea:

Take a horizontal lift f: M™ — 7=1Q™ and put

a:= \/§Ref,
b= \/§Imf

Remark:

@ We have to work locally to guarantee that @ is an immersion

o e



4 — Study of Lagrangian submanifolds of ()" — main results

Question: Given a Lagrangian immersion f: M™ — Q", can we see it
as the Gauss map of a hypersurface a : M"™ — S"+1(1)?

Idea:

Take a horizontal lift f: M™ — 7=1Q™ and put
a:=V2Re f,
b:=+/2Im f

Remark:
@ We have to work locally to guarantee that @ is an immersion

@ We expect a relation between the angle functions of f and the

principal curvatures of a. W



4 — Study of Lagrangian submanifolds of ()" — main results

Theorem (VdV, Wijffels)
PART |

Let a: M™ — S"T1(1) be a hypersurface with unit normal b and denote
by G: M"™ — Q" : p > [a(p) +ib(p)] its Gauss map. After a suitable
choice of A € A, the relation between the principal curvatures a and the
angle functions of G is

Aj = cot 0;
forj=1,...,n.

==



4 — Study of Lagrangian submanifolds of ()" — main results

Theorem (VdV, Wijffels)
PART |

Let a: M™ — S"T1(1) be a hypersurface with unit normal b and denote
by G: M"™ — Q" : p > [a(p) +ib(p)] its Gauss map. After a suitable
choice of A € A, the relation between the principal curvatures a and the
angle functions of G is

Aj = cot 0;
forj=1,...,n.

Remark. The choice of A comes down to choosing

Gp) = é(a@) —ib(p))

as a unit normal to 771Q" in $2"3(1) along G.

==



4 — Study of Lagrangian submanifolds of ()" — main results

Theorem (VdV, Wijffels)
PART 1I

Conversely, if f: M™ — Q" is a Lagrangian immersion, then for every
point of M"™ there exist an open neighborhood U of that point in M"
and an immersion a : U — S"T1(1) with Gauss map f|y. This
immersion is not unique, nor are its principal curvature functions.
However, for any choice of the hypersurface a and of the almost product
structure A € A, the principal curvature functions of a are related to the
corresponding angle functions of f by

g 1
cot(f; — 0) = im@
j

for j,k =1,...,n in points where \; # \j.

==



4 — Study of Lagrangian submanifolds of ()" — main results

Some classification theorems for minimal Lagrangian immersions into Q™




4 — Study of Lagrangian submanifolds of ()" — main results

Some classification theorems for minimal Lagrangian immersions into Q"

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q™ n > 2, be a minimal Lagrangian immersion with
constant local angle functions. If g is the number of different constant
local angle functions modulo m, then g € {1,2,3,4,6}. Moreover,
@ ifg=1, then f is the Gauss map of a part of
ai : S™(r) — S"TH(1);
@ if g =2, then f is the Gauss map of a part of
ag : SF(ry) x S"7F(ry) — S™HL(1);
@ if g =3, then f is the Gauss map of a part of
az : RP? x S'(g) — S*(1)
or of tubes around standard embeddings CP? — S7(1),
HP? — S13(1) or OP? — S?3(1).

==



4 — Study of Lagrangian submanifolds of ()" — main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q™ n > 2, be a totally geodesic Lagrangian immersion.
Then f is the Gauss map of a part of ay : S™(r) — S™*1(1) or of a part
of ag : S*(ry) x S"7*(ry) — S™HI(1).




4 — Study of Lagrangian submanifolds of ()" — main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q™ n > 2, be a totally geodesic Lagrangian immersion.
Then f is the Gauss map of a part of ay : S™(r) — S"TY(1) or of a part
of ag : S¥(r1) x S"7F(ry) — S™H(1).

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q", n > 2, be a minimal Lagrangian immersion, such that
M™ has constant sectional curvature c. Then either
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4 — Study of Lagrangian submanifolds of ()" — main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q™ n > 2, be a totally geodesic Lagrangian immersion.
Then f is the Gauss map of a part of ay : S™(r) — S"TY(1) or of a part
of ag : S¥(r1) x S"7F(ry) — S™H(1).

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q", n > 2, be a minimal Lagrangian immersion, such that
M™ has constant sectional curvature c. Then either

@ [ is the Gauss map of a part of
ay : S"(r) — S"TL(1);

==



4 — Study of Lagrangian submanifolds of ()" — main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q™ n > 2, be a totally geodesic Lagrangian immersion.
Then f is the Gauss map of a part of ay : S™(r) — S"TY(1) or of a part
of ag : S¥(r1) x S"7F(ry) — S™H(1).

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q", n > 2, be a minimal Lagrangian immersion, such that
M™ has constant sectional curvature c. Then either
@ [ is the Gauss map of a part of
ay : S"(r) — S"TL(1);
@ n=2 and f is the Gauss map of a part of
ag : St(r1) x St(ry) — S3(1);

==



4 — Study of Lagrangian submanifolds of ()" — main results

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q™ n > 2, be a totally geodesic Lagrangian immersion.
Then f is the Gauss map of a part of ay : S™(r) — S"TY(1) or of a part
of ag : S¥(r1) x S"7F(ry) — S™H(1).

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q", n > 2, be a minimal Lagrangian immersion, such that
M™ has constant sectional curvature c. Then either
@ [ is the Gauss map of a part of
ay : S"(r) — S"TL(1);
@ n=2 and f is the Gauss map of a part of
az : St(r1) x St(ry) — S3(1);
@ n =3 and f is the Gauss map of a part of

az : RP? x S'(e) — S4(1). m
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Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q™ n > 2, be a totally geodesic Lagrangian immersion.
Then f is the Gauss map of a part of ay : S™(r) — S"TY(1) or of a part
of ag : S¥(r1) x S"7F(ry) — S™H(1).

Theorem (Li, Ma, VdV, Vrancken, Wang)

Let f: M™ — Q", n > 2, be a minimal Lagrangian immersion, such that
M™ has constant sectional curvature c. Then either

@ [ is the Gauss map of a part of

ay : S"(r) — S"TL(1); c=2
@ n=2 and f is the Gauss map of a part of
ag : St(r1) x St(ry) — S3(1); c=0

@ n =3 and f is the Gauss map of a part of

a3 : RP? x S'(e) — S4(1). c=3 m



4 — Study of Lagrangian submanifolds of ()" — main results
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Some steps in the proof of the last theorem

Lemma

Let f: M™ — Q™ n > 2, be a Lagrangian immersion, such that M" has
constant sectional curvature c. Then

Sin(ei = 0]) sin(@i aF 9]' = 29k)(5k€h(6i7 ej) aF hfjJek)
+ sin(6; — Ox) sin(6; + O — 20;) (Sich(ej, ex) + hipJes)
+ sin(fy, — 0;) sin(0y, + 0; — 20,)(Jjoh(ei, ex) + hiJe;) = 0
for all i,j,k, L. In particular, if i, 7,k are mutually different, then
hE sin(0; — Ox) sin(6; + 0y, — 26,) = hé?j sin(0; — 6x) sin(0; + 0, — 26;),
h¥; sin(0; — 0;) sin(6; + 0; — 26;) = 0
and if i, j,k, ¢ are mutually different, then
h¥; sin(0; — 0;) sin(6; + 0; — 26,) = 0

| o
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Proposition

Let f: M™ — Q™ n > 2, be a minimal Lagrangian immersion such that
M™ has constant sectional curvature and choose A € A such that
014 ...+0,=0 mod w. Then either

@ all local angle functions are the same modulo 7, or
@ all local angle functions are mutually different modulo 7.

In the former case, the immersion is the Gauss map of a part of
ay : S™(r) — S"TH(1).
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Proposition

Let f: M™ — Q™ n > 2, be a minimal Lagrangian immersion such that
M™ has constant sectional curvature and choose A € A such that
014 ...+0,=0 mod w. Then either

@ all local angle functions are the same modulo 7, or
@ all local angle functions are mutually different modulo 7.

In the former case, the immersion is the Gauss map of a part of
ay : S™(r) — S"TH(1).

The conclusion follows by algebraic computations using all the obtained
relations and the equations of Gauss and Codazzi.
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4 — Study of Lagrangian submanifolds of ()" — main results

Proposition

Let f: M™ — Q™ n > 2, be a minimal Lagrangian immersion such that
M™ has constant sectional curvature and choose A € A such that
014 ...+0,=0 mod w. Then either

@ all local angle functions are the same modulo 7, or
@ all local angle functions are mutually different modulo 7.

In the former case, the immersion is the Gauss map of a part of
ay : S™(r) — S"TH(1).

The conclusion follows by algebraic computations using all the obtained
relations and the equations of Gauss and Codazzi.

Remark. For M? — Q% = S%(3) x S%(3), the classification was already
obtained by Castro and Urbano.
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5 — Question

Question:

Are there other Riemannian manifolds (M, g) with anti-commuting
almost complex structure J and almost product structure P such that

R(X YV)Z =a(g(Y,2)X—9(X,2)Y)
+b(9(X, JZ)JY —g(Y, JZ)JX +29(X, JY)J Z)
+¢(g(PY,Z)PX —g(PX, Z)PY +g¢(JPY, Z)JPX —g(JPX, Z)JPY)?
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5 — Question

Question:

Are there other Riemannian manifolds (M, g) with anti-commuting
almost complex structure J and almost product structure P such that

R(X YV)Z =a(g(Y,2)X—9(X,2)Y)
+b(9(X, JZ)JY —g(Y, JZ)JX +29(X, JY)J Z)
+¢(g(PY,Z)PX —g(PX, Z)PY +g¢(JPY, Z)JPX —g(JPX, Z)JPY)?

Only examples that | know of so far:
@ real space forms (no J, no P), complex space forms (no P)
e the homogeneous nearly Kahler $3 x $3

@ the complex quadric, the hyperbolic complex quadric

Remark. All such manifolds will be Einstein.
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Thank you for your attention!
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