# Homogeneous submanifolds in complex space forms

Symmetry and shape

Celebrating the 60th birthday of Prof. J. Berndt



José Carlos Díaz Ramos

University of Santiago de Compostela October 31, 2019

## Contents

## Homogeneous hypersurfaces

Homogeneous hypersurfaces in real space forms

Homogeneous hypersurfaces in  $\mathbb{C}H^n$ 

Hypersurfaces with constant principal curvatures in  $\mathbb{C}H^n$ 

Isoparametric hypersurfaces in  $\mathbb{C}H^n$ 

#### **Polar actions**

Polar actions in real space forms

Polar actions on  $\mathbb{C}H^n$ 

Isoparametric submanifolds in  ${\Bbb C}H^2$ 

# **Homogeneous hypersurfaces**

 $ar{M}$  Riemannian manifold,  $ar{
abla}$  Levi-Civita connection

 $M\subset \overline{M}$  hypersurface,  $\xi$  unit normal, abla Levi-Civita connection

## $oldsymbol{M}$ homogeneous



$$M=G\cdot o$$
, with  $o\in M,G\subset I(ar{M})$ 

G is said to act with cohomogeneity one

#### Problem.

- Classify homogeneous hypersurfaces (up to isometric congruence)
- Characterize homogeneous hypersurfaces in terms of geometric data

## **Complex space forms**

#### **Complex projective space**

$$(\mathbb{C}^{n+1},i \cdot) \ raket{\langle v,w 
angle = \mathrm{Re}\Bigl(\sum_{i=0}^n ar{v}_i w_i\Bigr)}$$

$$S^{2n+1} = \{z \in \mathbb{C}^{n+1} \colon \langle z, z \rangle = 1\}$$

$$z \sim w \Leftrightarrow \exists \lambda \in \mathbb{C} : w = \lambda z$$

$$\mathbb{C}P^n=S^{2n+1}/\sim$$

 $\pi : S^{2n+1} o \mathbb{C}P^n$  Hopf map

 $\pi$  Riemannian submersion

 $\mathbb{C}P^n$  is a Kähler manifold with constant positive holomorphic sectional curvature

#### **Complex hyperbolic space**

$$ig(\mathbb{C}^{1,n},ioldsymbol{\cdot}ig)ra{v,w}=\mathrm{Re}\Big(-ar{v}_0w_0+\sum_{i=1}^nar{v}_iw_i\Big)$$

$$H_1^{2n+1}=\{z\in\mathbb{C}^{1,n}\colon \langle z,z
angle=-1\}$$

$$z\sim w\Leftrightarrow \exists \lambda\in\mathbb{C}: w=\lambda z$$

$$\mathbb{C}H^n=H_1^{2n+1}/\sim$$

 $\pi{:}\,H_1^{2n+1} o{\mathbb C}H^n$  Hopf map

 $\pi$  semi-Riemannian submersion

 ${\Bbb C}H^n$  is a Kähler manifold with constant negative holomorphic sectional curvature

## **Complex space forms**

#### **Complex projective space**

$$(\mathbb{C}^{n+1},i \cdot) \ raket{\langle v,w 
angle = \mathrm{Re}\Bigl(\sum_{i=0}^n ar{v}_i w_i\Bigr)}$$

$$S^{2n+1} = \{ z \in \mathbb{C}^{n+1} \colon \langle z, z \rangle = 1 \}$$

$$\mathbb{C}P^n=S^{2n+1}/\sim$$

SU(n+1) acts transitively on  $\mathbb{C}P^n$ 

$$\mathbb{C}P^n = rac{SU(n+1)}{S(U(1)U(n))}$$

 ${\Bbb C}P^n$  is a symmetric space of rank one and compact type

#### **Complex hyperbolic space**

$$ig(\mathbb{C}^{1,n},ioldsymbol{\cdot}ig)ig\langle v,w
angle=\mathrm{Re}\Big(-ar{v}_0w_0+\sum_{i=1}^nar{v}_iw_i\Big)$$

$$H_1^{2n+1}=\{z\in\mathbb{C}^{1,n}\colon \langle z,z
angle=-1\}$$

$$\mathbb{C}H^n=H^{2n+1}_1/\sim$$

SU(1,n) acts transitively on  $\mathbb{C}H^n$ 

$$\mathbb{C}H^n=rac{SU(1,n)}{S(U(1)U(n))}$$

 ${\Bbb C}H^n$  is a symmetric space of rank one and noncompact type

## The complex hyperbolic space

$$\mathbb{C}H^n = rac{SU(1,n)}{S(U(1)U(n))}$$

## Iwasawa decomposition



 $[A,U] = \frac{1}{2}U$  [A,Z] = Z

# Homogeneous hypersurfaces in space forms

• Euclidean spaces  $\mathbb{R}^n$  [Somigliana, Levi-Civita, Segre]:



■ Real hyperbolics spaces  $\mathbb{R}H^n$  [Cartan]:



■ Spheres  $S^n$  [Hsiang, Lawson]: Isotropy representations of symmetric spaces of rank 2

# Homogeneous hypersurfaces in $\mathbb{C}P^n$ and $\mathbb{C}H^n$

**Theorem.** [Takagi] A homogeneous hypersurface in  $\mathbb{C}P^n$  is a principal orbit of the quotient of the isotropy representation of a Hermitian symmetric space of rank two.

**Theorem.** [Berndt, Tamaru] Homogeneous hypersurfaces in  $\mathbb{C}H^n$ :

- lacksquare tubes around totally geodesic  $\mathbb{C}H^k$ ,  $k\in\{0,\dots,n-1\}$
- lacktriangle tubes around totally geodesic  ${\mathbb R} H^n$
- horospheres
- ullet ruled homogeneous minimal Lohnherr hypersurfaces  $W^{2n-1}$ , or their equidistant hypersurfaces
- ullet tubes around ruled homogeneous minimal Berndt-Brück submanifolds  $W_{arphi}^{2n-k},$  for  $k\in\{2,\dots,n-1\}$ ,  $arphi\in(0,\pi/2]$  (k even if  $arphi
  eq\pi/2$ )

# Homogeneous hypersurfaces in $\mathbb{C}H^n$

# **Hopf examples**

lacktriangleq Tubes around a totally geodesic  $\mathbb{C}H^k$ ,  $k\in\{0,\dots,n-1\}$ 

Group action: 
$$S(U(1,k) imes U(n-k))$$
  $g=2$  if  $k \in \{0,n-1\}; \;\; g=3$  otherwise

lacktriangle Tubes around a totally geodesic  $\mathbb{R} H^n$ 

Group action: 
$$SO^0(1,n)$$
  $g=2$  if  $r=\log(2+\sqrt{3});\;\;g=3$  otherwise

Horospheres

Group action: N

$$g=2$$

# Homogeneous hypersurfaces in $\mathbb{C}H^n$

## Non-Hopf examples

$$V\subset \mathbb{C}^n$$
 has constant Kähler angle  $arphi$ 



$$ngle (Jv,V)=arphi$$
 ,  $orall v\in V\setminus \ \{0\}$ 

 $\mathfrak{w}\subset\mathfrak{g}_{\alpha}$  such that  $\mathfrak{w}^{\perp}$  is of constant Kähler angle  $\varphi$ ,  $k=\dim\mathfrak{w}^{\perp}$   $\mathfrak{s}_{\mathfrak{w}}=\mathfrak{a}\oplus\mathfrak{w}\oplus\mathfrak{g}_{2\alpha}$  subalgebra of  $\mathfrak{a}\oplus\mathfrak{n}$   $S_{\mathfrak{w}}$  subgroup of AN whose Lie algebra is  $\mathfrak{s}_{\mathfrak{w}}$ 

**Theorem.** [Berndt, Brück] Tubes around  $W_{arphi}^{2n-k}:=W_{\mathfrak{w}}=S_{\mathfrak{w}}\cdot o$  are homogeneous

- If  $\mathfrak w$  is a hyperplane,  $W_{\mathfrak w}$  is the Lohnherr hypersurface (g=3)
- ullet If  $arphi=\pi/2$ , then g=3 if  $r=\log(2+\sqrt{3})$ , otherwise g=4
- ullet If  $arphi 
  eq \pi/2$ , then k is even; g=4 if k=2, otherwise g=5

# **Characterization of homogeneous hypersurfaces**



- *M* has constant principal curvatures
- *M* is isoparametric

# **Characterization in real space forms**

**Theorem.** [Cartan] Isoparametric ⇔ constant principal curvatures

• Euclidean spaces  $\mathbb{R}^n$ :



• Spheres  $S^n$ :

There are inhomogeneous examples

## **Constant principal curvatures**

M homogeneous hypersurface



 $oldsymbol{M}$  has constant principal curvatures

Shape operator:  $\mathcal{S}X = -ar{
abla}_X \xi$ 

 $\mathcal{S}$  self-adjoint ( $\Rightarrow \mathcal{S}$  diagonalizable)

principal curvatures:

eigenvalues of  ${\cal S}$ 

*g*: number of principal curvatures

 $J\xi$ : Hopf vector field

h: # of nontrivial projections of  $J\xi$  onto principal curvature spaces

M is  $\mathsf{Hopf} \Leftrightarrow J \xi$  is an eigenvector of  $\mathcal{S} \Leftrightarrow h=1$ 

## **Constant principal curvatures**

#### M homogeneous hypersurface



 $oldsymbol{M}$  has constant principal curvatures

#### The answer is **YES** if:

g=1 [Tashiro, Tachibana] No umbilical hypersurfaces in  $\mathbb{C}H^n$ 

g=2 [Montiel]

- lacktriangle tubes around totally geodesic  ${\mathbb C} H^k$ ,  $k \in \{0,n-1\}$
- lacksquare tubes of radius  $r=\log(2+\sqrt{3})$  around totally geodesic  $\mathbb{R}H^n$
- horospheres

g=3 [Berndt, Díaz-Ramos]

- lacktriangle tubes around totally geodesic  ${\mathbb C} H^k$ ,  $k \in \{1,\dots,n-2\}$
- lacktriangledown tubes of radii  $r 
  eq \log(2+\sqrt{3})$  around totally geodesic  $\mathbb{R}H^n$
- lacktriangledown ruled Lohnherr hypersurfaces  $W_{\pi/2}^{2n-1}$ , or their equidistant hypersurfaces
- lacktriangledown tubes of radius  $r=\log(2+\sqrt{3})$  around Berndt-Brück submanifolds  $W_{\pi/2}^{2n-k}$  , for  $k\in\{2,\dots,n-1\}$

## **Constant principal curvatures**

M homogeneous hypersurface



 $oldsymbol{M}$  has constant principal curvatures

#### The answer is **YES** if:

#### h=1 [Berndt]

- lacktriangle tubes around totally geodesic  ${\mathbb C} H^k$ ,  $k \in \{0,\dots,n-1\}$
- lacktriangle tubes around totally geodesic  ${\mathbb R} H^n$
- horospheres

#### h=2 [Díaz-Ramos, Domínguez-Vázquez]

- lacktriangledown ruled Lohnherr hypersurfaces  $W_{\pi/2}^{2n-1}$ , or their equidistant hypersurfaces
- lacksquare tubes around Berndt-Brück submanifolds  $W^{2n-k}_{\pi/2}$  , for  $k\in\{2,\dots,n-1\}$

## **Isoparametric hypersurfaces**

M homogeneous hypersurface



 $oldsymbol{M}$  is isoparametric

 $f{:}\, ar{M} 
ightarrow \mathbb{R}$  isoparametric function



 $\| 
abla f \|^2$  and  $\Delta f$  constant along the level sets of f

 $M\subset ar{M}$  isoparametric hypersurface



level set of codimension  $\boldsymbol{1}$  of isoparametric function

[Cartan]

 $oldsymbol{M}$  isoparametric hypersurface



nearby parallel hypersurfaces of constant mean curvature

In real space forms: isoparametric  $\Leftrightarrow$  constant principal curvatures

 $oldsymbol{M}$  homogeneous hypersurface



 $oldsymbol{M}$  is isoparametric

# Inhomogeneous examples

$$\mathfrak{w}\subset\mathfrak{g}_{lpha}\cong\mathbb{C}^{n-1}$$
,  $k=\dim\,\mathfrak{w}^{\perp}$ 

 $\mathfrak{s}_{\mathfrak{w}} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2\alpha}$  subalgebra of  $\mathfrak{a} \oplus \mathfrak{n}$ 

 $S_{\mathfrak{w}}$  subgroup of AN whose Lie algebra is  $\mathfrak{s}_{\mathfrak{w}}$ 

**Theorem.** [Díaz-Ramos, Domínguez-Vázquez] Tubes around  $W_{\mathfrak{w}}=S_{\mathfrak{w}}\cdot o$  are isoparametric

If  $\mathfrak{w} \subset \mathfrak{g}_{\alpha}$ , then  $\mathfrak{w}^{\perp} = \bigoplus_{\varphi \in \Phi} \mathfrak{w}_{\varphi}^{\perp}$  is a sum of space of constant Kähler angle [Díaz-Ramos, Domínguez-Vázquez, Kollross]

Thus,  $W_{\mathfrak w}$  is homogeneous if and only if  ${\mathfrak w}^\perp$  has constant Kähler angle

# Isoparametric hypersurfaces in $\mathbb{C}H^n$

**Theorem.** [Díaz-Ramos, Domínguez-Vázquez, Sanmartín-López] Isoparametric hypersurfaces in  $\mathbb{C}H^n$ :

- lacktriangleq tubes around totally geodesic  $\mathbb{C}H^k$ ,  $k\in\{0,\ldots,n-1\}$
- lacktriangle tubes around totally geodesic  $\mathbb{R}H^n$
- horospheres
- ullet ruled homogeneous minimal Lohnherr hypersurfaces  $W_{\pi/2}^{2n-1}$ , or their equidistant hypersurfaces
- ullet tubes around a ruled homogeneous minimal Berndt-Brück submanifolds  $W_{arphi}^{2n-k}$ , for  $k\in\{2,\dots,n-1\}$ ,  $arphi\in(0,\pi/2]$  (k even if  $arphi
  eq\pi/2$ )
- tubes around ruled homogeneous minimal submanifolds  $W_{\mathfrak w}$ , for some proper real subspace  $\mathfrak w$  of  $\mathfrak g_{\alpha}{\cong}\mathbb C^{n-1}$  such that  $\mathfrak w^{\perp}$  has nonconstant Kähler angle

## **Characterization of homogeneous hypersurfaces**

*M* homogeneous hypersurface



- M has constant principal curvatures
- *M* is isoparametric

**Corollary.** If M is a connected complete hypersurface in  $\mathbb{C}H^2$  then the following statements are equivalent:

- *M* is homogeneous
- M has constant principal curvatures
- *M* is isoparametric

**Corollary.** If M is a connected complete hypersurface in  $\mathbb{C}H^n$  then, M is homogeneous if and only if M is isoparametric and has constant principal curvatures

## **Polar actions**

## *G* acts **polarly**



#### there is a section

**Section**: submanifold that intersects all orbits of G orthogonally





A section is thought as a set of "canonical forms"

**Example.**  $Sl(n,\mathbb{R})/SO(n)$   $\mathfrak{sl}(n,\mathbb{R})=\mathfrak{so}(n)\oplus\{\text{symmetric matrices}\}$  SO(n) acts on symmetric matrices by conjugation  $\{\text{diagonal matrices}\}\$ is a section

## G acts polarly



#### there is a section

**Section**: submanifold that intersects *all* orbits of G orthogonally



#### Problem.

- Classify polar actions (up to isometric congruence)
- Characterize orbits of polar actions in terms of geometric data

# Polar actions on real space forms

- Spheres  $S^n$ : [Dadok] Isotropy representations of symmetric spaces
- lacktriangle Euclidean spaces  $\mathbb{R}^n$  Isotropy representations of symmetric spaces imes translations
- lacktriangle Real hyperbolic spaces  $\mathbb{R}H^n$  [Wu] SO(1,k) imes K or N imes K, where K acts polarly on  $\mathbb{R}^{n-k}$



## Polar actions on $\mathbb{C}H^n$

**Theorem.** [Podestà, Thorbergsson] A polar action on  $\mathbb{C}P^n$  is orbit equivalent to the a quotient of an isotropy representation of a Hermitian symmetric space

**Theorem.** [-, Domínguez-Vázquez, Kollross] Polar actions on  $\mathbb{C}H^n$ :

- $\begin{array}{l} \bullet \ \mathfrak{h}=\mathfrak{q}\oplus\mathfrak{so}(1,k), k\in\{0,\dots,n\}\\ \ \mathfrak{q} \ \text{subalgebra of}\ \mathfrak{u}(n-k)\\ \ Q \ \text{acts polarly on}\ \mathbb{C}^{n-k} \ \text{with totally real section} \end{array}$
- $\begin{array}{l} \bullet \quad \mathfrak{h} = \mathfrak{q} \oplus \mathfrak{b} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2\alpha} \\ \bullet \quad \mathfrak{b} \text{ linear subspace of } \mathfrak{a}, \, \mathfrak{w} \text{ real subspace of } \mathfrak{g}_{\alpha}, \\ \mathfrak{q} \text{ subalgebra of } \mathfrak{k}_0 = \mathfrak{n}_K(\mathfrak{a}), \, \mathfrak{q} \text{ normalizes } \mathfrak{w}, \\ Q \text{ acts polarly on } \mathfrak{g}_{\alpha} \ominus \mathfrak{w} \text{ with totally real section} \end{array}$

Recall:  $\mathfrak{w} = igoplus_{arphi \in \Phi} \mathfrak{w}_{arphi}$ 

## Characterization of orbits of polar actions

### [Heintze, Liu, Olmos]





- normal bundle is flat
- parallel submanifolds have constant mean curvature in radial directions
- for any  $p\in M$  there exists a  $section\ \Sigma_p$  through p (totally geodesic submanifold s.t.  $T_p\Sigma_p=
  u_pM$ )

Isoparametric in  $\mathbb{C}H^2$ 



principal orbit of polar action

## [Terng]

$$M\subset ar{M}$$
isoparametric



- normal bundle is flat
- eigenvalues of the shape operator with respect to any parallel normal vector field are constant

Terng-isoparametric in  $\mathbb{C}H^2$ 



- principal orbit of polar action
- Chen's surface
- circles