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Homogeneous hypersurfaces

M Riemannian manifold, V Levi-Civita connection

M C M hypersurface, £ unit normal, V Levi-Civita connection

| > M = G - o, with

M homogeneous S oc M,G C I(M)

(7 is said to act with cohomogeneity one

Problem.
= Classify homogeneous hypersurfaces (up to isometric congruence)
= Characterize homogeneous hypersurfaces in terms of geometric data



Complex space forms

Complex projective space

n

(C™ 3 (vyw) = Re(Z@iwi)

i=0
S+l = {2 eC™: (2,2) = 1}

zr~wesINeC:w= Az
Cpnszn—{—l/N

m: S CP™ Hopfmap

7 Riemannian submersion

CP™ is a Kahler manifold with constant positive
holomorphic sectional curvature

Complex hyperbolic space
(CY™42) (v,w) = Re(—@owg + Z'Diwi)
1=1
HM < {7 cCY™: (2,2) = —1}
zvwes IANeCrw= Az

CH" = H{"'/ ~

T Hf”“ — CH™ Hopf map

7 semi-Riemannian submersion

CH™ is a Kahler manifold with constant negative
holomorphic sectional curvature



Complex space forms

Complex projective space Complex hyperbolic space
(C™L, 4 (v,w) = Re(Z@iwi) (CY™ 3 (v, w) = Re(—@owg + Z'Diwi)
i=0 i=1
§¥+l = {2 eC™: (2,2) = 1} HM < {7 cCY™: (2,2) = —1}
CP" = S2n+1/ ~ CH" = H12n+1/ ~
SU(n + 1) acts transitively on CP" SU(1,n) acts transitively on CH™
1 1
CP" — SU(n+1) CH" — SU(1,n)
S(U1)U(n)) S(U1)U(n))
CP™ is a symmetric space of rank one and compact CH™ is a symmetric space of rank one and

type noncompact type



The complex hyperbolic space

SU(1
cgr — —20Ln)
S(U(1)U(n))
Ilwasawa decomposition
: o CH" = AN
t ly t tivel
IY(CH")= K AN —) EZ?CSII;nnpy ATEEY with left-invariant
‘ | metric
AVARR V4
SUMU@R) n = 8. & o
¢ 12 Heisenberg algebra

(O R
U,V] = (JU,V)Z
AU =1U [AZ=2Z



Homogeneous hypersurfaces in space forms

= Euclidean spaces R" [Somigliana, Levi-Civita, Segre]:

= Real hyperbolics spaces RH "™ [Cartan]:

= Spheres S" [Hsiang, Lawson]:
Isotropy representations of symmetric spaces of rank 2



Homogeneous hypersurfaces in CP" and CH"

Theorem. [Takagi] A homogeneous hypersurface in CP" is a principal orbit of
the quotient of the isotropy representation of a Hermitian symmetric space of

rank two.

Theorem. [Berndt, Tamaru] Homogeneous hypersurfaces in CH":

tubes around totally geodesic CH*, k € {0,...,n — 1}

tubes around totally geodesic RH™

horospheres

ruled homogeneous minimal Lohnherr hypersurfaces W21 or their

equidistant hypersurfaces

tubes around ruled homogeneous minimal Berndt-Bruck submanifolds
—k

Wg” Jforke {2,...,n—1}, ¢ € (0,7/2]

(k even if p # 7/2)



Homogeneous hypersurfaces in CH"

Hopf examples

= Tubes around a totally geodesic CH*, k € {0,...,n — 1}
Group action: S(U(1,k) x U(n — k))
g=2ifk € {0,n —1}; g = 3 otherwise

= Tubes around a totally geodesic RH"
Group action: SO°(1, n)
g=2ifr=1log(2 + v/3); g= 3 otherwise

= Horospheres
Group action: IV
g=2



Homogeneous hypersurfaces in CH"

Non-Hopf examples

V ¢ C" has

i L _
constant Kahler angle ¢ r—> (Jv, V) = ¢, Vv € V'\ {0}

to C g, such that o is of constant Kahler angle ¢, k = dim to
Sp— a @ to Dgy, subalgebraofa @ n
S subgroup of AN whose Lie algebraiis s,

Theorem. [Berndt, Bruck] Tubes around Wgn_k = Wy = Sy - 0are
homogeneous

= If tv is a hyperplane, W, is the Lohnherr hypersurface (g = 3)
= If o = 7/2,then g = 3ifr = log(2 + v/3), otherwise g = 4
» If o # 7w/2,then kis even; g = 4 if k = 2, otherwise g = 5



Characterization of homogeneous hypersurfaces

= M has constant principal curvatures

M homogeneous hypersurface
= 1 —> » M is isoparametric



Characterization in real space forms

Theorem. [Cartan] Isoparametric <= constant principal curvatures

= Euclidean spaces R":

= Spheres S™:
There are inhomogeneous examples



Constant principal curvatures

M homogeneous hypersurface > M has constant principal curvatures

<\_)
Shape operator: SX = —V x¢

S self-adjoint > principal curvatures:
(= S diagonalizable) @ /m eigenvalues of S

g. number of principal curvatures
J&: Hopf vector field

h: # of nontrivial projections of J& onto principal curvature spaces

M is Hopf < J€ is an eigenvector of S<< h = 1



Constant principal curvatures

M homogeneous hypersurface > M has constant principal curvatures

S
The answer is YES if: \_)

g = 1 [Tashiro, Tachibana] No umbilical hypersurfaces in CH"

g = 2 [Montiel]
= tubes around totally geodesic CH*, k € {0,n — 1}

= tubes of radius r = log(2 + 1/3) around totally geodesic RH"
= horospheres

g = 3 [Berndt, Diaz-Ramos]
= tubes around totally geodesic CH", k € {1,...,n — 2}

= tubes of radii 7 # log(2 + 1/3) around totally geodesic RH "

= ruled Lohnherr hypersurfaces W272 L or their equidistant hypersurfaces

= tubes of radius r = log(2 + +/3) around Berndt-Briick submanifolds Wz/”2 b forke {2,...,n—1}



Constant principal curvatures

M homogeneous hypersurface > M has constant principal curvatures

S
The answer is YES if: J

h =1 [Berndt]
= tubes around totally geodesic CH", k € {0,...,n — 1}

= tubes around totally geodesic RH ™
= horospheres

h = 2 [Diaz-Ramos, Dominguez-Vazquez]

= ruled Lohnherr hypersurfaces W272 L or their equidistant hypersurfaces

= tubes around Berndt-Briick submanifolds VV2/"2 b forke {2,...,n—1}



Isoparametric hypersurfaces

M homogeneous hypersurface > M is isoparametric

/
f:M—R : > |V £||? and A f constant
isoparametric function / along the level sets of f
McM : > level set of codimension 1
isoparametric hypersurface -y of isoparametric function

[Cartan]

|
M isoparametric hypersurface r—> nearby parallel hypersurfaces

of constant mean curvature

In real space forms: isoparametric < constant principal curvatures



Isoparametric hypersurfaces in CH"

M homogeneous hypersurface > M is isoparametric

Inhomogeneous examples

wC g, C"!, k=dim "

Sp= ad o D g,, subalgebraofa ®n

S subgroup of AN whose Lie algebrais s,

Theorem. [Diaz-Ramos, Dominguez-Vazquez] Tubes around W, = S, - 0 are
iIsoparametric

Ifto C g, then o= @%@ m; IS @ sum of space of constant Kahler angle
[Diaz-Ramos, Dominguez-Vazquez, Kollross]

Thus, W, is homogeneous if and only if to has constant Kahler angle



Isoparametric hypersurfaces in CH"

Theorem. [Diaz-Ramos, Dominguez-Vazquez, Sanmartin-Lopez] Isoparametric
hypersurfaces in CH"™:

tubes around totally geodesic CH*, k € {0,...,n — 1}

tubes around totally geodesic RH"
horospheres

ruled homogeneous minimal Lohnherr hypersurfaces Wf};_l, or their
equidistant hypersurfaces

tubes around a ruled homogeneous minimal Berndt-Brick submanifolds
Wg”_k, forke {2,...,n—1}, ¢ € (0,7/2]

(k even if p # 7/2)

tubes around ruled homogeneous minimal submanifolds WW,,, for some

proper real subspace tv of ga%@”_l such that to" has nonconstant Kahler
angle



Characterization of homogeneous hypersurfaces

= M has constant principal curvatures

M homogeneous hypersurface > . ,
— = M is isoparametric

Corollary. If M is a connected complete hypersurface in CH? then the following
statements are equivalent:

= M is homogeneous
= M has constant principal curvatures

= M is isoparametric

Corollary. If M is a connected complete hypersurface in CH" then, M is

homogeneous if and only if M is isoparametric and has constant principal
curvatures



Polar actions

I
GG acts polarly > there is a section

Section: submanifold that intersects all orbits of GG orthogonally

A section is thought as a set of "canonical forms"

Example. SI(n,R)/SO(n) sl(n,R) = so(n) ® {symmetric matrices}
SO(n) acts on symmetric matrices by conjugation

{diagonal matrices} is a section



Polar actions

|
GG acts polarly > there is a section

Section: submanifold that intersects all orbits of GG orthogonally

Problem.
= Classify polar actions (up to isometric congruence)
= Characterize orbits of polar actions in terms of geometric data



Polar actions on real space forms

= Spheres S™:
[Dadok] Isotropy representations of symmetric spaces

= Euclidean spaces R"

Isotropy representations of symmetric spaces X translations

= Real hyperbolic spaces RH"
[Wu] SO(1, k) x K or N x K, where K acts polarly on R"*




Polar actions on CH"

Theorem. [Podesta, Thorbergsson] A polar action on CP" is orbit equivalent to
the a quotient of an isotropy representation of a Hermitian symmetric space

Theorem. [-, Dominguez-Vazquez, Kollross] Polar actions on CH":
» h =qdso(l,k),ke{0,...,n}
( subalgebra of u(n — k)
Q@ acts polarly on C™* with totally real section
" h=qObDw Dy,
b linear subspace of g, tv real subspace of g,

q subalgebra of gg=nx(a), ¢ normalizes tv,
() acts polarly on g, ©tv with totally real section

Recall: o = P 510,



Characterization of orbits of polar actions

[Heintze, Liu, Olmos]

McM SN
isoparametric 7 =

Isoparametric in CH?

[Terng]

McM . N
isoparametric p—y

Terng-isoparametric

in CH?

normal bundle is flat

parallel submanifolds have constant mean curvature in radial
directions

for any p € M there exists a section ., through p
(totally geodesic submanifold s.t. 71;,>, = v, M)

— L : ,
—/ principal orbit of polar action

normal bundle is flat

eigenvalues of the shape operator with respect to any parallel normal
vector field are constant

= principal orbit of polar action
i
> m Chen's surface
— :
m Circles



