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Soul Theorem (Cheeger and Gromoll, 1972):

Let (X , g) be an open manifold with sec(X ) ≥ 0.

Then there
exists a closed submanifold M ⊂ X (called soul) satisfying

I M is totally convex and totally geodesic

I X is diffeomorphic to the normal bundle of M in X .

• Every closed M with sec(M) ≥ 0 can be a soul: M × Rk .

Converse to the Soul Theorem:

Rm // E

��

Does E admit sec(E ) ≥ 0?

M M closed with sec(M) ≥ 0
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Converse to the Soul Theorem:

Rm // E

��

Does E admit sec(E ) ≥ 0?

M M closed with sec(M) ≥ 0

• (Özaydin-Walschap, 1994) If E → T 2 is non-trivial then E does
NOT admit sec ≥ 0.

• Every E → Sn, for n ≤ 5 admits sec ≥ 0 (n = 4 by Grove-Ziller,
2000).

• (Rigas, 1978) for every E → Sn, there is some k such that
E × Rk admits sec ≥ 0.

Goal: Extend Rigas’ result to other base manifolds (with a lot of
symmetries).
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Base spaces and vector bundles with symmetries

Let G be a compact Lie group acting on a closed manifold M.

• Homogeneous spaces: dimM/G = 0

I M = G/H admits a G -invariant metric of sec ≥ 0.

• Cohomogeneity one manifolds: dimM/G = 1

I (Grove-Ziller, 2000) If M/G = [−1, 1] and the singular orbits
have codim 2 then M admits a G -invariant metric of sec ≥ 0.

A G -vector bundle over a G -manifold is a v.b. π : E → M, where
E is a G -manifold, π is G -equivariant and g : Ex → Egx is linear.
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Cohomogeneity one spaces

Let M be a G -manifold with M/G = [−1, 1].

• There are isotropy groups H < K−,K+ < G .

• K±/H are spheres S`± and there is a decomposition

M = G ×K− D`−+1 ∪G/H G ×K+ D`++1

• A cohomogeneity one mfd M is determined by (G ,H,K−,K+).

• Conversely, any diagram (G ,H,K−,K+) with K±/H = S`±
determines a cohomogeneity one space.

Examples with codimension 2 singular orbits (i.e.
K±/H = S1) and hence sec ≥ 0 (by Grove-Ziller):

S4, CP2, S2 × S2, CP2]CP2, every homotopy RP5, every
SO(4)-principal bundle over S4,...
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Using known techniques (bi-invariant metrics on compact Lie
groups, Riemannian submersions, special gluings by Grove-Ziller):

Theorem 1

• Homogeneous spaces: any G -vector bundle over G/H admits
a G -invariant metric of sec ≥ 0.

• Cohomogeneity 1: any G -vector bundle over (G ,H,K−,K+)
with K±/H = S1 admits a G -invariant metric of sec ≥ 0.

We have the natural question:

Question:

Given a closed G -manifold M, which vector bundles over M admit
a G -vector bundle structure?
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• The tangent bundle TM is always a G -vector bundle.

• All vector bundles over S2 are SU(2)-vector bundles.

• All vector bundles over S3 are trivial.

• (Grove-Ziller, 2000) All vector bundles over S4 are SU(2)-vector
bundles.

• There exist G -manifolds M satisfying the following:

for every complex vector bundle E → M, there is an integer k
such that E ⊕ Ck is a G-vector bundle.
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From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)

Over a closed G -manifold M the following are equivalent:

1. For every complex vector bundle E → M, there is an integer k
such that E ⊕ Ck is a G -vector bundle.

2. The forgetful map KG (M)→ K (M) is surjective.

K (M) := {E − F : E ,F ∈ VectC(M)}

E1 − F1 = E2 − F2 if ∃k such that E1 ⊕ F2 ⊕ Ck = E2 ⊕ F1 ⊕ Ck

• K (M) can be computed from H∗(M) using a spectral sequence.

K (S2n+1) = [Z]⊕ 0, K (S2n) = [Z]⊕ Z,

• If M has a G -action one can define KG (M) in a similar way.

• There is a natural (FORGETFUL) map

F : KG (M)→ K (M)
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Results for homogeneous spaces M = G/H

(Pittie, 1972) If rkG = rkH then F is surjective (plus an
additional conditional we do not need).

(AGZ, 2019) rkG − rkH ≤ 1 if and only if F is surjective.

• Idea: G -vector bundles are of the form G ×H V , for V ∈ Rep(H),

⇒ Hodgkin’s spectral sequence (1975).

⇐ “If H is small it cannot generate many vector bundles”

Theorem 2

Suppose rkG − rkH ≤ 1. Then for every complex E → G/H there
is some k such that E × Rk has sec ≥ 0.

• Examples: all homogenous spaces with sec > 0 (Sn,CPn,HPn, ..)
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Results for cohomogeneity one M = (G ,H ,K−,K+)

(Carlson, 18) If rkG = max{rkK−, rkK+} then F is surjective
(plus an additional conditional we do not need).

• Idea: use Mayer-Vietoris and results for G/H and G/K±.

Theorem 3

Suppose K±/H ∼= S1 and rkG = rkK± .

Then, for every complex E → M there is some k such that E ×Rk

has sec ≥ 0.

• Examples: there is a cohomo 1 action by SU(2)n+1 on

(CP2]CP2)× (S2)n, n ≥ 0

satisfying the hypotheses in Theorem 3. This manifold is not even
homotopy equivalent to a homogeneous space.
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Results for cohomogeneity one M = (G ,H ,K−,K+)

(AGZ, 2019) The map

KG (M)⊗Q→ K (M)⊗Q

is surjective if rkG − rkK± ≤ 1 and dimK±/H is odd.

• Tools: (1) the Chern character K (M)
∼−→ H∗(M,Q)

(2) Rational Homotopy Theory

Theorem 4

Suppose K±/H ∼= S1 and rkG − rkK± ≤ 1.

Then, for every complex E → M there are q, k such that
(E ⊕ ...⊕ E )︸ ︷︷ ︸

q times

×Rk has sec ≥ 0.

• Examples: the hypotheses now allow M’s with χ(M) = 0.
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