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Outline

Problem: Classify manifolds admitting a metric of sec > 0.

S

R", non-compact (open) S", compact (closed)

Goal: give (new) examples of open mfds with sec > 0.
0. Motivation
1. Methods to construct metrics (geometrical part)

2. Apply the methods (topological part)



Let (X, g) be an open manifold with sec(X) > 0.
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Converse to the Soul Theorem:

R™ —— E Does E admit sec(E) > 07

M M closed with sec(M) >0

e (Ozaydin-Walschap, 1994) If E — T2 is non-trivial then E does
NOT admit sec > 0.

e Every E — S", for n <5 admits sec > 0 (n = 4 by Grove-Ziller,
2000).

e (Rigas, 1978) for every E — S", there is some k such that
E x Rk admits sec > 0.

Goal: Extend Rigas’ result to other base manifolds (with a lot of
symmetries).
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Let G be a compact Lie group acting on a closed manifold M

 FIGTOEENESUSISPAESs: dim M /G — 0
» M = G/H admits a G-invariant metric of sec > 0.
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Base spaces and vector bundles with symmetries

Let G be a compact Lie group acting on a closed manifold M

 HIGTOEEREBUSISPAEES: dim M/ G — 0
» M = G/H admits a G-invariant metric of sec > 0.

 (ColiGMoEenEIyIoREIANIToIds: dim M/G = 1

» (Grove-Ziller, 2000) If M/G = [—1,1] and the Singular orbits

favereadim™ then M admits a G-invariant metric of sec > 0.

A G-vector bundle over a G-manifold is a v.b. m: E — M, where

E is a G-manifold, 7 is G-equivariant and g : Ex — Eg is linear.



Let M be a G-manifold with M/G = [-1,1].
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Cohomogeneity one spaces
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Cohomogeneity one spaces
Let M be a G-manifold with M/G = [-1,1].
e There are isotropy groups H< KK < 6.
e Ky /H are spheres S** and there is a decomposition
M =G xx_ D" Ug/y G xy, DT
e A cohomogeneity one mfd M is determined by (G, H, K_, K}).

e Conversely, any diagram (GIHIKEIKE) with Ky/H = S'*
determines a cohomogeneity one space.

Examples with codimension 2 singular orbits (i.e.
KL/H = S*) and hence sec > 0 (by Grove-Ziller):

S* CP?, S2 x S?, CP%@, every homotopy RIP®, every
SO(4)-principal bundle over S*,...
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Using known techniques (bi-invariant metrics on compact Lie
groups, Riemannian submersions, special gluings by Grove-Ziller):
Theorem 1

e Homogeneous spaces: any G-vector bundle over G/H admits

a G-invariant metric of sec > 0.

¢ (Cohomogeneity 1: any G-vector bundle over (G, H,K_, K})
with (K& /H = S% admits a G-invariant metric of sec > 0.

We have the natural question:
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Question:

Given a closed G-manifold M, which vector bundles over M admit
a G-vector bundle structure?

e The tangent bundle TM is always a G-vector bundle.
e All vector bundles over S? are SU(2)-vector bundles.
e All vector bundles over S3 are trivial.

e (Grove-Ziller, 2000) All vector bundles over S* are SU(2)-vector
bundles.

e There exist G-manifolds M satisfying the following:

for every complex vector bundle E — M, there is an integer k
such that E @ Ck is a G-vector bundle.
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From stabilization to K-theory (Atiyah, Hirzebruch..., 50s)

Over a closed G-manifold M the following are equivalent:

1. For every complex vector bundle E — M, there is an integer k
such that E @ C¥ is a G-vector bundle.

2. The forgetful map Kg(M) — K(M) is surjective.

K(M):={E — F : E,F € Vectc(M)}
Ey — F1 = Ey — Fp if 3k such that £y & F, & Ck = By & Fy @ Ck

e K(M) can be computed from H*(M) using a spectral sequence.
K> =[z]e0,  K(S*) =[Z]®Z,

e If M has a G-action one can define Kg(M) in a similar way.

e There is a natural (FORGETFUL) map
F: Kg(M) — K(M)
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Results for homogeneous spaces M = G/H
(Pittie, 1972) If €(kG'=¥k'H then F is surjective (plus an
additional conditional we do not need).

(AGZ, 2019) tkG =rkH'<D if and only if F is surjective.

e Idea: G-vector bundles are of the form G xy V/, for V € Rep(H),
= Hodgkin's spectral sequence (1975).

< “If H is small it cannot generate many vector bundles”

Theorem 2

Suppose tkG =rkH <1. Then for every complex E — G/H there
is some k such that E x R¥ has sec > 0.

e Examples) all homogenous spaces with sec > 0 (S", CP", HP", ..)
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e |dea: use Mayer-Vietoris and results for G/H and G/K.

Suppose KEHIEISY and (RGE=TKIKD.
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Results for cohomogeneity one M = (G, H, K_, K})

(Carlson, 18) If tk'G = max{rk K=, rk K-} then F is surjective
(plus an additional conditional we do not need).

e Idea: use Mayer-Vietoris and results for G/H and G/Kx.
Theorem 3

Suppose Kt /H = SY and fKG =TKK2D.

Then, for every complex E — M there is some k such that E x R¥
has sec > 0.

o EXamplEs) there is a cohomo 1 action by SU(2)"*! on
(CP4CP?) x (S?)", n>0

satisfying the hypotheses in Theorem 3. This manifold is not even
homotopy equivalent to a homogeneous space.
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(AGZ, 2019) The map

KeM)@Q = KM)2Q
s surjective f RIGESFRKEIET and GiKEJHIEEH.

e Tools: (1) the Chern character K(M) = H*(M,Q)
(2) Rational Homotopy Theory

Suppose KEJHIEISY and (RGETKKEET

Then, for every complex E — M there are g, k such that
(E®...® E) xR has sec > 0.
| —

g times

o [Examplesi the hypotheses now allow M's with X%M)
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THANK YOU!



