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Preliminaries

Let G be a compact Lie group acting by isometries on a complete
Riemannian manifold M.

The orbit space X = M/G is stratified by orbit types, and the boundary
consists of the most important singular strata; here the boundary ∂X is
defined as the closure of the union of all strata of codimension one of X .

In case M is positively curved, this notion of boundary coincides with the
boundary of X as an Alexandrov space and has a bearing on the geometry
and topology of X .

For instance, it is easy to see that ∂X is non-empty if and only if X is
contractible.

The boundary often plays an important role in theorems regarding
isometric actions.

The existence of boundary is a local condition, in the sense that
X = M/G has non-empty boundary if and only if there exists a point
p ∈ M such that the slice representation of the isotropy group Gp on the
normal space νp(Gp) to the orbit Gp has orbit space with non-empty
boundary (slice theorem).
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Relation to other classes

In the case of orthogonal representations of compact Lie groups on vector
spaces (or more generally, isometric actions on positively curved
manifolds), the following criteria have been used to describe
representations whose geometry is not too complicated, namely:

(i) The principal isotropy group is non-trivial [Hsiang-Hsiang 1970].
(ii) There exists a non-trivial reduction, that is, a representation of a group with

smaller dimension and isometric orbit space [G.-Lytchak 2014].
(iii) The cohomogeneity, or codimension of the principal orbits is “low”

[Hsiang-Lawson 1971].

(i) implies (ii) (take fix point set of principal isotropy group).

(ii) implies having non-empty boundary (apply Morse theory to sufficiently
long geodesic contained in regular set).

To some extent, (iii) is also related to non-empty boundary (as seen a
posteriori).
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Special case: simple groups

Theorem

Let G be a compact connected simple Lie group acting effectively and
isometrically on a connected complete orientable n-manifold M of positive
sectional curvature. Assume that X = M/G has non-empty boundary and
n ≥ `G . Then G has a fixed point in M and dimMG ≥ dimM − `G .

(If dimM ≥ `G and ∂X 6= ∅, then MG 6= ∅.)
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Main Theorem (structural, “asymptotic”result)

Theorem

Let G be a compact connected Lie group acting effectively and isometrically on
a connected complete orientable n-manifold M of positive sectional curvature.
Assume that X = M/G has non-empty boundary and

n > αG + βG

where

αG = 2 dimGss + 8 rkGss + 4 nsf Gss and βG = 2 dimZ(G).

Then there exists a positive-dimensional normal subgroup N of G such that:

1 The fixed point set MN is non-empty (and G-invariant); let B be a
component containing principal orbits of the G-action on MN .

2 B/G has empty boundary and is contained in all faces of X .
3 In particular:

a. N contains, up to conjugation, all isotropy groups of G corresponding to
orbit types of strata of codimension one in X .

b. At a generic point in B, the slice representation of N has orbit space with
non-empty boundary.
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Outline of proof

Basic idea of main theorem is to construct a normal subgroup containing
all isotropy groups associated to codimension one strata of X for which we
can prove its fixed point set is non-empty.

Basic tool is Frankel’s theorem:

codim(Mσ1 ∩ · · · ∩Mσ`) ≤
∑̀
i=1

codimMσi .

Abelian case is easy.

Consider the special case G is simple. We need to prove that G has a
fixed point in M. We shall write MG as a finite intersection of fixed points
sets as in the LHS of Frankel’s formula. It suffices to find finitely many
elements of G that generate a dense subgroup.
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Outline, II

Recall we are in case G is simple.

An involutive inner automorphism σ of G defines a symmetric space of
inner type G/K (here K = Gσ), and induces the geodesic symmetry of
G/K at the basepoint.

First remark

A finite number `G/K of generic conjugates of the involution generate a dense
subgroup of G . In fact, `G/K is the minimum number ` such that there exists
p1, . . . , p` ∈ G/K “spanning” G/K in the sense that no proper connected
closed totally geodesic submanifold of G/K contains those points.

For generic p1, p2 ∈ G/K , span{p1, p2} is a maximal flat torus.

For generic p1, . . . , pk (k ≥ 2),

span{p1, . . . , pk} = L(p1) = · · · = L(pk)

where L is the closure of the group generated by even products of the
geodesic symmetries at p1, . . . , pk .
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Outline, III

Second remark

We can make the codimension in M of the fixed point set of the involution σ
to be bounded by

4 + dimG/K (1)

by suitably choosing σ to fix a regular point or an important point (i.e. a point
projecting to a codimension one stratum of X ) in M.

In fact, we can find
σ ∈ G of order 2 in Ad(G) = G/Z(G) such that σ fixes a regular point (in
case dimGprinc > 0 or G is finite of even order) or an important point (in case
Gprinc is finite of odd order) in M.

We call an element σ ∈ G of order 2 in Ad(G) satisfying estimate (1) a
nice involution.
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Outline, IV

Let
`G := max

K
{`G/K (4 + dimG/K)},

where K runs through all symmetric subgroups of G with maximal rank.

Now Frankel’s theorem yields:

codimMG = codim(Mσ1 ∩ · · · ∩M
σ`G/K ) (σi ’s: gen conj of σ)

≤
`G/K∑
i=1

codimMσi (Frankel)

≤ `G/K (4 + dimG/K) (nice involututions)

≤ `G .

In the case of a general compact connected Lie group, the argument is
more technical and one proceeds by induction using the simple factors and
the center. (We skip the details.)
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Application: representations of compact connected simple Lie groups with
non-empty boundary in the orbit space

G ker V Property Effective p.i.g.

SU(2) 1 C2 polar 1

SO(3) 1
R3

polar
T1

S2
0R

3 = R5 Z2
2

SU(n) (n ≥ 3)
1 Cn

polar
SU(n − 1)

Zn Ad Tn−1

{±1} if n is even S2Cn toric Zn−1
2

SU(n) (n ≥ 5) {±1} if n is even Λ2Cn polar if n is odd, toric otherwise SU(2)
b n

2
c
/ker

SU(6) 1 Λ3C6 = H10 q-toric T2

SU(8) Z4 [Λ4C8]R polar Z7
2

SO(n) (n ≥ 5)
1 Rn

polar
Spin(n − 1)

{±1} if n is even
Λ2Rn = Ad T

b n
2
c

S2
0R

n Zn−1
2

Spin(7) 1 R8 (spin) polar G2
Spin(8) Z2 R8

± (half-spin) polar Spin(7)′

Spin(9) 1 R16 (spin) polar Spin(7)

Spin(10) 1 C16
± (half-spin) polar SU(4)

Spin(11) 1 H16 (spin) − 1

Spin(12) Z2 H16
± (half-spin) q-toric Sp(1)3

Spin(16) Z2 R128
± (half-spin) polar Z8

2

Sp(n) (n ≥ 3)
1 C2n = Hn

polar
Sp(n − 1)

±1
[S2C2n ]R = Ad Tn

[Λ2
0C

2n ]R Sp(1)n/{±1}
Sp(3) 1 Λ3

0C
6 = H7 q-toric Z2

2
Sp(4) {±1} [Λ4

0C
8]R polar Z6

2
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Representations, cont’d

G ker V Property Effective p.i.g.

G2 1
R7

polar
SU(3)

Ad T2

F4 1
R26

polar
Spin(8)

Ad T4

E6 1 C27 toric Spin(8)

E6 Z3 Ad polar T6

E7 1 H28 q-toric Spin(8)

E7 Z2 Ad polar T7

E8 1 Ad polar T8

SU(n)
k Cn 2 ≤ k ≤ n − 1

Cn ⊕ Λ2Cn n ≥ 4

SU(4)
k R6 ⊕ ` C4 2 ≤ k + ` ≤ 3

R6 ⊕ Ad −

Spin(n)
k Rn 2 ≤ k ≤ n − 1

Rn ⊕ Ad n ≥ 4

Sp(2) H2 ⊕ R5 −
Spin(7) k R7 ⊕ ` R8 2 ≤ k + ` ≤ 4

Spin(8) k R8 ⊕ ` R8
+ ⊕ m R8

− 2 ≤ k + ` + m ≤ 5

Spin(9)
k R16 2 ≤ k ≤ 3

R16 ⊕ k R9 1 ≤ k ≤ 4

2R16 ⊕ k R9 0 ≤ k ≤ 2

Spin(10) C16 ⊕ k R10 1 ≤ k ≤ 3

Spin(12) H16 ⊕ R12 −

Sp(n)
k C2n 2 ≤ k ≤ n

C2n ⊕ [Λ2
0C

2n ]R n ≥ 3

Sp(3) 2 [Λ2
0C

6]R −
G2 k R7 2 ≤ k ≤ 3

F4 2 R26 −
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Application: quaternionic representations

Theorem

Suppose G is a compact Lie group,

ρ : G → O(V )

is a quaternionic representation of cohomogeneity at least two and

ρ̂ : Ĝ = G × Sp(1)→ O(V )

is its natural extension. Then

dimV /G = dimV /Ĝ + 3

.

Proof.

Follows from previous classification by going to maximal connected groups.
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Application: Isometric actions of some simple groups

Let G be one of the following simple Lie groups:

SU(2), SU(n)/Zn (n ≥ 3), SU(8)/Z4, SO(n)/{±1} (n ≥ 6 even),

SO′(16), Sp(n)/{±1} (n ≥ 4), E6/Z3, E7/Z2, E8.

Theorem

An effective isometric action of G on a connected simply-connected compact
positively curved manifold of dimension n > `G has non-empty boundary in the
orbit space if and only if the action is polar (in this case, M is equivariantly
diffeomorphic to a CROSS with a linearly induced action).

Proof.

Follows from classification above using deep results from Grove-Searle and
Fang-Grove-Thorbergsson.
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Thank you!
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