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Cohomogeneity one actions

M complete connected Riemannian manifold

A cohomogeneity one action on M is a (proper) isometric action with
codimension one maximal orbits.

Properties

The orbit space is homeomorphic to S1, [0, 1], R or [0, 1).

All the orbits, except at most two, are hypersurfaces.
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Cohomogeneity one actions

M complete connected Riemannian manifold

A cohomogeneity one action on M is a (proper) isometric action with
codimension one maximal orbits.

Properties

The orbit space is homeomorphic to S1, [0, 1], R or [0, 1).

All the orbits, except at most two, are hypersurfaces.

Two isometric actions of groups G1, G2 on M are orbit equivalent if
there exists ϕ ∈ Isom(M) that maps each G1-orbit to a G2-orbit.

Equivalent problem

Classify homogeneous hypersurfaces in M up to congruence.

A homogeneous hypersurface is a codimension one orbit of the action of
some subgroup of Isom(M).



Homogeneous hyp. in rank one symmetric spaces

Homogeneous hypersurfaces have been classified, up to congruence, in

Euclidean spaces Rn [Somigliana (1918), Segre (1938)]

Real hyperbolic spaces RHn [Cartan (1939)]

Round spheres Sn [Hsiang, Lawson (1971), Takagi, Takahashi (1972)]

Complex projective spaces CPn [Takagi (1973)]

Quaternionic projective spaces HPn [D’Atri (1979), Iwata (1978)]

Cayley projective plane OP2 [Iwata (1981)]

Irreducible compact symmetric spaces [Kollross (2002)]

Hyperbolic spaces CHn, HH2, OH2 [Berndt, Tamaru (2007)]

Question

What happens with homogeneous hypersurfaces in HHn, n ≥ 3?
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Cohomogeneity one actions on hyperbolic spaces
FHn ∼= G/K

isom.∼= AN symmetric space of noncompact type and rank one

In particular, a ' R, n = v⊕ z and K0 := NK (a).

M RHn CHn HHn OH2

SO0(1,n)
SO(n)

SU(1,n)
S(U(1)×U(n))

Sp(1,n)
Sp(1)Sp(n)

F−20
4

Spin(9)

v Rn−1 Cn−1 Hn−1 O
dim z 0 1 3 7

K0 SO(n− 1) U(n − 1) Sp(1)Sp(n− 1) Spin(7)
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There is a totally geodesic singular orbit.

Its orbit foliation is regular.

There is a non-totally geodesic singular orbit Sw, where w ( v is such
that NK0(w) acts transitively on the unit sphere of w⊥.
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One totally geodesic singular orbit [Berndt, Brück (2001)]

Tubes around tot. geodesic submanifolds P in FHn are homogeneous iff

in RHn: P = {point},RH1, . . . ,RHn−1

in CHn: P = {point},CH1, . . . ,CHn−1,RHn

in HHn: P = {point},HH1, . . . ,HHn−1,CHn

in OH2: P = {point},OH1,HH2

P
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No singular orbits [Berndt, Tamaru (2003)]

Orbit equivalent to the action of:

N ; horosphere foliation

The connected subgroup of G
with Lie algebra a⊕w⊕ z, where
w is a (real) hyperplane in v
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Cohomogeneity one actions on HHn+1

Problem

Classify cohomogeneity one actions on HHn+1, n ≥ 2.

Equivalent problem [Berndt, Tamaru (2007)]

Classify real subspaces w ⊂ v ∼= Hn such that NK0(w) acts transitively on
the unit sphere of w⊥, up to conjugation by k ∈ K0.

K0
∼= Sp(n)Sp(1) acts on v ∼= Hn via (A, q) · v = Avq−1

Definition

A real subspace V of Hn is protohomogeneous if there is a subgroup of
Sp(n)Sp(1) that acts transitively on the unit sphere of V .

Equivalent problem

Classify protohomogeneous subspaces of Hn, up to some T ∈ Sp(n)Sp(1).
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A real subspace V of Hn is protohomogeneous if there is a subgroup of
Sp(n)Sp(1) that acts transitively on the unit sphere of V .

Equivalent problem

Classify protohomogeneous subspaces of Hn, up to some T ∈ Sp(n)Sp(1).
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Quaternionic Kähler angle

J ⊂ EndR(Hn) quaternionic structure of Hn

{J1, J2, J3} canonical basis of J: J2i = −Id, JiJ
>
i = Id, JiJi+1 = Ji+2

V real subspace of Hn, v ∈ V \ {0}, π : Hn → V orthogonal projection

Definition

Consider the symmetric bilinear form

Lv : J× J→ R, Lv (J, J ′) := 〈πJv , πJ ′v〉.

The quaternionic Kähler angle of v with respect to V is the triple
(ϕ1, ϕ2, ϕ3), with ϕ1 ≤ ϕ2 ≤ ϕ3, such that the eigenvalues of Lv are
cos2(ϕi )||v ||2, i = 1, 2, 3.

There is a canonical basis {J1, J2, J3} of J made of eigenvectors of Lv .

Proposition [Berndt, Brück (2001)]

V ⊂ Hn protohomogeneous ⇒ V has constant quaternionic Kähler angle.
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Some known results

There are subspaces V with constant quaternionic Kähler angle (0, 0, 0),
(0, 0, π/2), (0, π/2, π/2), (π/2, π/2, π/2), (ϕ, π/2, π/2), (0, ϕ, ϕ)...

Remark

Not every triple arises as the constant quaternionic Kähler angle of a
subspace V , e.g. (0, 0, ϕ), ϕ ∈ (0, π/2)

Question

Does constant quaternionic Kähler angle imply protohomogeneous?

Theorem [D́ıaz-Ramos, Doḿınguez-Vázquez (2013)]

The tubes around Sw have constant principal curvatures if and only if
w⊥ ⊂ v has constant quaternionic Kähler angle.
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Hairy ball method

V protohomogeneous real subspace of Hn, dimV = k

⇒ V constant quaternionic Kähler angle Φ(V ) = (ϕ1, ϕ2, ϕ3)

Sk−1 unit sphere of V , π : Hn → V orthogonal projection onto V

∆v := {πJv : J ∈ J} smooth distribution on Sk−1, rank ∆ ∈ {0, 1, 2, 3}

Applying the generalized hairy ball theorem [Adams (1963)]

If k ≥ 5 is odd, then Φ(V ) = (π/2, π/2, π/2).

If k ≡ 2 (mod 4), then Φ(V ) = (ϕ, π/2, π/2), for some ϕ ∈ [0, π/2].

If k = 3, then Φ(V ) = (ϕ,ϕ, π/2), for some ϕ ∈ [0, π/2].

Remaining cases

Classify subspaces V with k = 3 and Φ(V ) = (ϕ,ϕ, π/2).

X

Case k ≡ 0 (mod 4).

?
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Protohomogeneous subspaces in Hn

Problem

Classify protohomogeneous real subspaces V ⊂ Hn with dimV = k = 4r

V protohomogeneous subspace of Hn, dimV = 4r , Φ(V ) = (ϕ1, ϕ2, ϕ3)

Assume k ≥ 5. For simplicity, assume ϕ3 6= π/2.

1 There exists a canonical basis {J1, J2, J3} of J such that the Kähler
angle of any v ∈ Sk−1 w.r.t. V and the complex structure Ji is ϕi .

2 Define Pi = 1
cosϕi

πJi : V → V . Then PiPj + PjPi = −2δij Id.

3 {P1,P2,P3} induces a structure of Cl(3)-module on V .

4 V =
(⊕

V+

)
⊕
(⊕

V−
)
, where V+ and V− are the two

inequivalent irreducible Cl(3)-modules, dimV± = 4.

5 Each factor has constant quaternionic Kähler angle (ϕ1, ϕ2, ϕ3).
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V =
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V+

)
⊕
(⊕

V−
)

V+ and V− two inequivalent irreducible Cl(3)-modules
dimV± = 4, Φ(V±) = (ϕ1, ϕ2, ϕ3)

6 There are two types of subspaces V of dimension 4:
I V+, which exists if and only if cosϕ1 + cosϕ2 + cosϕ3 ≤ 1.
I V−, which exists if and only if cosϕ1 + cosϕ2 − cosϕ3 ≤ 1.

7 6 ∃T ∈ Sp(n)Sp(1) such that TV+ = V−.

8 If V , with dimV = 4r , then either V =
⊕

V+ or V =
⊕

V−.

From this, one can obtain the classification of protohomogeneous
subspaces of Hn, and hence of cohomogeneity one actions on HHn+1.

Question

What if we mix both types of 4-dimensional subspaces, V+ and V−?
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New isoparametric hypersurfaces

V =

( r+⊕
V+

)
⊕
( r−⊕

V−

)
V+ and V− two inequivalent irreducible Cl(3)-modules, dimV± = 4

Φ(V±) = (ϕ1, ϕ2, ϕ3) with cosϕ1 + cosϕ2 + cosϕ3 ≤ 1

Theorem [D́ıaz-Ramos, Doḿınguez-Vázquez, RV (2019)]

If r+, r− ≥ 1, then V is a non-protohomogeneous subspace of Hn with
constant quaternionic Kähler angle.

HHn+1
isom.∼= AN, a⊕ n = a⊕ v⊕ z, v ∼= Hn

w := orthogonal complement of V in v
sw = a⊕w⊕ z ; Sw connected subgroup of AN

Theorem [D́ıaz-Ramos, Doḿınguez-Vázquez, RV (2019)]

Sw and the tubes around it define an inhomogeneous isoparametric
family of hypersurfaces with constant principal curvatures in HHn+1.
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Theorem [D́ıaz-Ramos, Doḿınguez-Vázquez, RV (2019)]

If r+, r− ≥ 1, then V is a non-protohomogeneous subspace of Hn with
constant quaternionic Kähler angle.

HHn+1
isom.∼= AN, a⊕ n = a⊕ v⊕ z, v ∼= Hn

w := orthogonal complement of V in v
sw = a⊕w⊕ z ; Sw connected subgroup of AN
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Theorem [D́ıaz-Ramos, Doḿınguez-Vázquez, RV (2019)]

Sw and the tubes around it define an inhomogeneous isoparametric
family of hypersurfaces with constant principal curvatures in HHn+1.



New isoparametric hypersurfaces

V =

( r+⊕
V+

)
⊕
( r−⊕

V−

)
V+ and V− two inequivalent irreducible Cl(3)-modules, dimV± = 4
Φ(V±) = (ϕ1, ϕ2, ϕ3) with cosϕ1 + cosϕ2 + cosϕ3 ≤ 1
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